Skip to main content
Log in

Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A performance analysis of the NEMOMED8 ocean regional circulation model was undertaken for the Adriatic Sea during the period of 1961–2012, focusing on two mechanisms, dense water formation (DWF) and the Adriatic–Ionian Bimodal Oscillating System (BiOS), which drive interannual and decadal variability in the basin. The model was verified based on sea surface temperature and sea surface height satellite measurements and long-term in situ observations from several key areas. The model qualitatively reproduces basin-scale processes: thermohaline-driven cyclonic circulation and freshwater surface outflow along the western Adriatic coast, dense water dynamics, and the inflow of Ionian and Levantine waters to the Adriatic. Positive temperature and salinity biases are reported; the latter are particularly large along the eastern part of the basin, presumably because of the inappropriate introduction of eastern Adriatic rivers into the model. The highest warm temperature biases in the vertical direction were found in dense-water-collecting depressions in the Adriatic, indicating either an inappropriate quantification of DWF processes or temperature overestimation of modelled dense water. The decadal variability in the thermohaline properties is reproduced better than interannual variability, which is considerably underestimated. The DWF rates are qualitatively well reproduced by the model, being larger when preconditioned by higher basin-wide salinities. Anticyclonic circulation in the northern Ionian Sea was modelled only during the Eastern Mediterranean Transient. No other reversals of circulation that could be linked to BiOS-driven changes were modelled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Adloff F, Somot S, Sevault F, Jorda G, Aznar R, Déqué M, Herrmann M, Marcos M, Dubois C, Padorno E, Alvarez-Fanjul E, Gomis D (2015) Mediterranean Sea response to climate change in an ensemble of 21st century scenarios. Clim Dyn 45:2775–2802. doi:10.1007/s00382-015-2507-3

    Article  Google Scholar 

  • Artegiani A, Bregant D, Paschini E, Pinardi N, Raicich F, Russo A (1997) The Adriatic Sea general circulation, part I: air–sea interactions and water mass structure. J Phys Oceanogr 27:1492–1514

    Article  Google Scholar 

  • Barnier B, Madec G, Penduff T, Molines JM, Treguier A, Le Sommer J, Beckmann A, Biastoch A, Böning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543–567. doi:10.1007/s10236-006-0082-1

    Article  Google Scholar 

  • Beg-Paklar G, Isakov V, Koračin D, Kourafalou V, Orlić M (2001) A case study of bora-driven flow and density changes on the Adriatic shelf (January 1987). Cont Shelf Res 21:1751–1783

    Article  Google Scholar 

  • Benetazzo A, Bergamasco A, Bonaldo D, Falcieri FM, Sclavo M, Langone L, Carniel S (2014) Response of the Adriatic Sea to an intense cold air outbreak: dense water dynamics and wave-induced transport. Prog Oceanogr 128:115–138. doi:10.1016/j.pocean.2014.08.015

    Article  Google Scholar 

  • Bensi M, Cardin V, Rubino A, Notarstefano G, Poulain PM (2013) Effects of winter convection on the deep layer of the Southern Adriatic Sea in 2012. J Geophys Res 118:6064–6075. doi:10.1002/2013JC009432

    Article  Google Scholar 

  • Bergamasco A, Oguz T, Malanotte-Rizzoli P (1999) Modelling dense water mass formation and winter circulation in the northern and central Adriatic Sea. J Mar Syst 20:279–300

    Article  Google Scholar 

  • Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modelling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J Geophys Res 115:C0817. doi:10.1029/2009JC005950

    Article  Google Scholar 

  • Beuvier J, Béranger K, Lebeaupin Brossier C, Somot S, Sevault F, Drillet Y, Bourdallé-Badie R, Ferry N, Lyard F (2012) Spreading of the Western Mediterranean Deep Water after winter 2005: time scales and deep cyclone transport. J Geophys Res 117:C07019. doi:10.1029/2011JC007679

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388

    Article  Google Scholar 

  • Borzelli GLE, Gačić M, Cardin V, Civitarese G (2009) Eastern Mediterranean transient and reversal of the Ionian Sea circulation. Geophys Res Lett 36:L15108. doi:10.1029/2009GL039261

    Article  Google Scholar 

  • Bozec A, Bouruet-Aubertot P, Iudicone D, Crépon M (2008) Impact of penetrative solar radiation on the diagnosis of water mass transformation in the Mediterranean Sea. J Geophys Res 113:C06012. doi:10.1029/2007JC004606

    Article  Google Scholar 

  • Brodeau L, Koenigk T (2015) Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries. Clim Dyn 46:2863–2882

    Article  Google Scholar 

  • Buljan M (1953) Fluctuations of salinity in the Adriatic, Izvještaj Republičke ribarstveno-biološke ekspedicije “Hvar” 1948–1949. Acta Adriat 2:1–64

    Google Scholar 

  • Buljan M, Zore-Armanda M (1976) Oceanographic properties of the Adriatic Sea. Oceanogr Mar Biol Ann Rev 14:11–98

    Google Scholar 

  • Castellari S, Pinardi N, Leaman K (1998) Simulation of water mass formation processes in the Mediterranean Sea: influence of the time frequency of the atmospheric forcing. J Geophys Res 105:24157–24181

    Article  Google Scholar 

  • Cavaleri L, Bertotti L, Tescaro N (1997) The modelled wind climatology of the Adriatic Sea. Theoret Appl Climatol 56:231–254

    Article  Google Scholar 

  • Chiggiato J, Bergamasco A, Borghini M, Falcieri FM, Falco P, Langone L, Miserocchi S, RussoA Schroeder K (2016) Dense-water bottom currents in the Southern Adriatic Sea in spring 2012. Mar Geol 375:134–145. doi:10.1016/j.margeo.2015.09.005

    Article  Google Scholar 

  • Danabasoglu G (2004) A comparison of global ocean general circulation model solutions obtained with synchronous and accelerated integration methods. Ocean Model 7:323–341. doi:10.1016/j.ocemod.2003.10.001

    Article  Google Scholar 

  • Davolio S, Stocchi P, Benetazzo A, Bohm E, Riminucci F, Ravaioli M, Li XM, Carniel S (2015) Exceptional Bora outbreak in winter 2012: validation and analysis of high-resolution atmospheric model simulations in the northern Adriatic area. Dyn Atmos Oceans 71:1–20

    Article  Google Scholar 

  • Dorman CE, Carniel S, Cavaleri L, Chiggiato J, Doyle J, Haack T, Grbec B, Janeković I, Lee C, Malačič V, Orlić M, Paschini E, Pullen J, Russo A, Sclavo M, Vilibić I (2007) Winter 2003 marine atmospheric conditions and the Bora over the northern Adriatic. J Geophys Res 112:C03S03. doi:10.1029/2005JC003134

  • Gačić M, Civitarese G, Miserocchi S, Cardin V, Crise A, Mauri E (2002) The open-ocean convection in the Southern Adriatic: a controlling mechanism of the spring phytoplankton bloom. Cont Shelf Res 22:1897–1908. doi:10.1016/S0278-4343(02)00050-X

    Article  Google Scholar 

  • Gačić M, Borzelli GLE, Civitarese G, Cardin V, Yari S (2010) Can internal processes sustain reversals of the ocean upper circulation? The Ionian Sea example. Geophys Res Lett 37:L09608. doi:10.1029/2010GL043216

    Google Scholar 

  • Gačić M, Civitarese G, Borzelli GLE, Kovačević V, Poulain PM, Theocharis A, Catucci A, Zarokanellos N (2011) On the relationship between the decadal oscillations of the northern Ionian Sea and the salinity distributions in the eastern Mediterranean. J Geophys Res 116:C12002. doi:10.1029/2011JC007280

    Article  Google Scholar 

  • Gačić M, Schroeder K, Civitarese G, Cosoli S, Vetrano A, Borzelli GLE (2013) Salinity in the Sicily Channel corroborates the role of the Adriatic–Ionian Bimodal Oscillating System (BiOS) in shaping the decadal variability of the Mediterranean overturning circulation. Ocean Sci 9:83–90. doi:10.5194/os-9-83-2013

    Article  Google Scholar 

  • Gačić M, Civitarese G, Kovačević V, Ursella L, Bensi M, Menna M, Cardin V, Poulain PM, Cosoli S, Notarstefano G, Pizzi C (2014) Extreme winter 2012 in the Adriatic. An example of climatic effect on the BiOS rhythm. Ocean Sci 10:513–522. doi:10.5194/os-10-513-2014

    Article  Google Scholar 

  • Grbec B, Vilibić I, Bajić A, Morović M, Beg-Paklar G, Matić F, Dadić V (2007) Response of the Adriatic Sea to the atmospheric anomaly in 2003. Ann Geophys 25:835–846. doi:10.5194/angeo-25-835-2007

    Article  Google Scholar 

  • Grisogono B, Belušić D (2009) A review of recent advances in understanding the meso- and microscale properties of the severe Bora wind. Tellus A 61:1–16. doi:10.1111/j.1600-0870.2008.00369.x

    Article  Google Scholar 

  • Grubišić V (2004) Bora-driven potential vorticity banners over the Adriatic. Q J R Meteorol Soc 130:2571–2603

    Article  Google Scholar 

  • Gunduz M, Dobričić S, Oddo P, Pinardi N, Guarnieri A (2013) Impact of Levantine Intermediate Water on the interannual variability of the Adriatic Sea based on simulations with a fine resolution ocean model. Ocean Model 72:253–263. doi:10.1016/j.ocemod.2013.10.002

    Article  Google Scholar 

  • Hamon M, Beuvier J, Somot S, Lellouche JM, Greiner E, Jordà G, Bouin MN, Arsouze T, Béranger K, Sevault F, Dubois C, Drevillon M, Drillet Y (2016) Design and validation of MEDRYS, a Mediterranean Sea reanalysis over 1992–2013. Ocean Sci 12:577–599. doi:10.5194/os-12-577-2016

    Article  Google Scholar 

  • Heimann D (2001) A model-based wind climatology of the eastern Adriatic coast. Meteorol Z 10:5–16

    Article  Google Scholar 

  • Hendershott MC, Rizzoli P (1976) The winter circulation of the Adriatic Sea. Deep Sea Res 23:353–370

    Google Scholar 

  • Herrmann M, Somot S (2008) Relevance of ERA40 dynamical downscaling for modelling deep convection in the Mediterranean Sea. Geophys Res Lett 35:L04607. doi:10.1029/2007GL032442

    Article  Google Scholar 

  • Herrmann M, Estournel C, Déqué M, Marsaleix P, Sevault F, Somot S (2008) Dense water formation in the Gulf of Lion shelf: impact of atmospheric interannual variability and climate change. Cont Shelf Res 28:2092–2112. doi:10.1016/j.csr.2008.03.003

    Article  Google Scholar 

  • Herrmann M, Sevault F, Beuvier J, Somot S (2010) What induced the exceptional 2005 convection event in the northwestern Mediterranean basin? Answers from a modelling study. J Geophys Res 115:C12051. doi:10.1029/2010JC006162

    Article  Google Scholar 

  • Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of daily wind speed spatial and temporal variability and intense wind events over the Mediterranean Sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001. doi:10.5194/nhess-11-1983-2011

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change, IPCC, Geneva, Switzerland, 151 pp

  • Ivanov VV, Shapiro GI, Huthnance JM, Aleynik DL, Golovin PN (2004) Cascades of dense water around the world ocean. Prog Oceanogr 60:47–98. doi:10.1016/j.pocean.2003.12.002

    Article  Google Scholar 

  • Janeković I, Mihanović H, Vilibić I, Tudor M (2014) Extreme cooling and dense water formation estimates in open and coastal regions of the Adriatic Sea during the winter of 2012. J Geophys Res 119:3200–3218. doi:10.1002/2014JC009865

    Article  Google Scholar 

  • Josey SA (2003) Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J Geophys Res 108:3237. doi:10.1029/2003/JC001778

    Article  Google Scholar 

  • Klein B, Roether W, Manca BB, Bregant D, Beitzel V, Kovačević V, Luchetta A (1999) The large deep water transient in the Eastern Mediterranean. Deep-Sea Res 46:371–414. doi:10.1016/S0967-0637(98)00075-2

    Article  Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69. doi:10.1007/BF00337288

    Article  Google Scholar 

  • Kohonen T (1998) The SOM Methodology. In: Deboeck G, Kohonen T (eds) Visual explorations in finance with self-organizing maps. Springer, London, pp 159–167

    Chapter  Google Scholar 

  • Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Book  Google Scholar 

  • Kovač Ž, Morović M, Matić F (2014) Uncovering spatial and temporal patterns of the Adriatic Sea color with self-organizing maps. Int J Remote Sens 35:2105–2117. doi:10.1080/01431161.2014.885667

    Google Scholar 

  • Kuzmić M, Janeković I, Book JW, Martin PJ, Doyle JD (2006) Modelling the northern Adriatic double-gyre response to intense bora wind: a revisit. J Geophys Res 111:C03S13. doi:10.1029/2005JC003377

  • Li L, Casado A, Congedi L, Dell’Aquila A, Dubois C, Elizalde A, L’Hévéder B, Lionello P, Sevault F, Somot S, Ruti P, Zampieri M (2012) Modelling of the Mediterranean climate system. Clim Mediterr Reg, Amsterdam, pp 419–448

    Book  Google Scholar 

  • Liu Y, Weisberg RH (2005) Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J Geophys Res 110:C06003. doi:10.1029/2004JC002786

    Google Scholar 

  • Liu Y, Weisberg RH (2007) Current patterns on the West Florida Shelf from joint self-organizing map analyses of HF radar and ADCP data. J Atmos Ocean Technol 24:702–712. doi:10.1175/JTECH1999.1

    Article  Google Scholar 

  • Liu Y, Weisberg RH (2011) A review of self-organizing map applications in meteorology and oceanography. Self-organizing maps: applications and novel algorithm design. InTech, Rijeka, pp 253–272

    Google Scholar 

  • Liu Y, Weisberg RH, Mooers CNK (2006) Performance evaluation of the self-organizing map for feature extraction. J Geophys Res 111:C05018. doi:10.1029/2005JC003117

    Article  Google Scholar 

  • Liu Y, Weisberg RH, Vignudelli S, Mitchum GT (2016) Patterns of the loop current system and regions of sea surface height variability in the eastern Gulf of Mexico revealed by the self-organizing maps. J Geophys Res 121:2347–2366

    Article  Google Scholar 

  • Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80:199–217. doi:10.1016/j.pocean.2009.02.001

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note Pole de Modélisation, Inst. Pierre-Simon Laplace 27, Paris

  • Malanotte-Rizzoli P, Artale V, Borzelli-Eusebi GL, Brenner S, Crise A, Gačić M, Kress N, Marullo S, Ribera d’Alcalà M, Sofianos S, Tanhua T, Theocharis A, Alvarez M, Ashkenazy Y, Bergamasco A, Cardin V, Carniel S, Civitarese G, D’Ortenzio F, Font J, Garcia-Ladona E, Garcia-Lafuente JM, Gogou A, Gregoire M, Hainbucher D, Kontoyannis H, Kovačević V, Kraskapoulou E, Kroskos G, Incarbona A, Mazzocchi MG, Orlić M, Ozsoy E, Pascual A, Poulain PM, Roether W, Rubino A, Schroeder K, Siokou-Frangou J, Souvermezoglou E, Sprovieri M, Tintoré J, Triantafyllou G (2014) Physical forcing and physical/biochemical variability of the Mediterranean Sea: a review of unresolved issues and directions for future research. Ocean Sci 10:281–322. doi:10.5194/os-10-281-2014

    Article  Google Scholar 

  • Manca BB, Kovačević V, Gačić M, Viezzoli D (2002) Dense water formation in the Southern Adriatic Sea and spreading into the Ionian Sea in the period 1997–1999. J Mar Syst 33:133–154. doi:10.1016/S0924-7963(02)00056-8

    Article  Google Scholar 

  • Mantziafou A, Lascaratos A (2004) An eddy resolving numerical study of the general circulation and deep-water formation in the Adriatic Sea. Deep-Sea Res I 51:251–292

    Article  Google Scholar 

  • Mantziafou A, Lascaratos A (2008) Deep-water formation in the Adriatic Sea: interannual simulations for the years 1979-1999. Deep-Sea Res I Oceanogr Res Pap 55:1403–1427. doi:10.1016/j.dsr.2008.06.005

    Article  Google Scholar 

  • Marullo S, Nardelli BB, Guarracino M, Santoleri R (2007) Observing the Mediterranean Sea from space: 21 years of Pathfinder—AVHRR sea surface temperatures (1985 to 2005): re-analysis and validation. Ocean Sci 3:299–310

    Article  Google Scholar 

  • MEDAR/MEDATLAS Group (2002) MEDAR/MEDATLAS 2002 Database: Cruise inventory, observed and analysed data of temperature and bio-chemical parameters [4 CD-ROMs], Inst. FR. De Rech. Pour l’Esploit, de la Mer, Brest, France

  • Meyssignac B, Calafat F, Somot S, Rupolo V, Stocchi P, Llovel W, Cazenave A (2011) Two-dimensional reconstruction of the Mediterranean sea level over 1970-2006 from tide gauge data and regional ocean circulation model outputs. Glob Planet Change 77:49–61. doi:10.1016/j.gloplacha.2011.03.002

    Article  Google Scholar 

  • Mihanović H, Cosoli S, Vilibić I, Ivanković D, Dadić V, Gačić M (2011) Surface current patterns in the northern Adriatic extracted from high-frequency radar data using self-organizing map analysis. J Geophys Res 116:C0803. doi:10.1029/2011JC007104

    Google Scholar 

  • Mihanović H, Vilibić I, Carniel S, Tudor M, Russo A, Bergamasco A, Bubić N, Ljubešić Z, Viličić D, Boldrin A, Malačić V, Celio M, Comici C, Raicich F (2013) Exceptional dense water formation on the Adriatic shelf in the winter of 2012. Ocean Sci 9:561–572. doi:10.5194/os-9-561-2013

    Article  Google Scholar 

  • Mihanović H, Vilibić I, Dunić N, Šepić J (2015) Mapping of decadal middle Adriatic oceanographic variability and its relation to the BiOS regime. J Geophys Res 120:5615–5630. doi:10.1002/2015JC0725

    Article  Google Scholar 

  • Oddo P, Guarnieri A (2011) A study of the hydrographic conditions in the Adriatic Sea from numerical modelling and direct observations (2000–2008). Ocean Science 7:549–567. doi:10.5194/os-7-549-2011

    Article  Google Scholar 

  • Orlić M, Gačić M, La Violette PE (1992) The currents and circulation of the Adriatic Sea. Oceanol Acta 15:109–124

    Google Scholar 

  • Orlić M, Kuzmić M, Pasarić Z (1994) Response of the Adriatic Sea to the Bora and Sirocco forcing. Cont Shelf Res 14:91–116

    Article  Google Scholar 

  • Pascual A, Vidal-Vijande E, Ruiz S, Somot S, Papadopoulos V (2014) Spatio-temporal variability of the surface circulation in the Western Mediterranean: a comparative study using altimetry and modelling. In: The Mediterranean Sea: temporal variability and spatial patterns, geophysical monograph 202, eds, Borzelli GLE, Gačić M, Lionello P, Malanotte-Rizzoli P, American Geophysical Union (First Edition), ISBN-10: 1118847342

  • Pinardi N, Baretta J, De Mey P, Haine, K, Bassini S, Lascaratos A, Roether W, Brasseur P, Krestenitis S, Crise S, Pierini S, Allen I, Williams R, Vested J, LeTraon PY (1996) Mediterranean eddy resolving modelling and interdisciplinary studies—II (MERMAIDS-EUProject)—final scientific and management report—IMGA. Research Activity Note 1/1996 (December 1996)

  • Raicich F, Malačič V, Celio M, Giaiotti D, Cantoni C, Colucci RR, Čermelj B, Pucillo A (2013) Extreme air–sea interactions in the Gulf of Trieste (North Adriatic) during the strong Bora event in winter 2012. J Geophys Res 118:5238–5250

    Article  Google Scholar 

  • Reynaud T, Legrand P, Mercier H, Barnier B (1998) A new analysis of hydrographic data in the Atlantic and its application to an inverse modelling study. Int World Ocean Circ Exp Newsl 32, Natl Oceanogr Data Cent, Silver Spring, MD

  • Rio MH, Pascual A, Poulain PM, Menna M, Barcelo B, Tintore J (2014) Computation of a new mean dynamic topography for the Mediterranean Sea from model outputs, altimeter measurements and oceanographic in situ data. Ocean Sci 10:731–744. doi:10.5194/os-10-731-2014

    Article  Google Scholar 

  • Rixen M, Beckers JM, Levitus S, Antonov J, Boyer T, Maillard C, Fichaut M, Balopoulos E, Iona S, Dooley H, Garcia MJ, Manca B, Giorgetti A, Manzella G, Mikhailov N, Pinardi N, Zavatarelli M (2005) The Western Mediterranean Deep Water: a proxy for climate change. Geophys Res Lett 32:L12608. doi:10.1029/2005GL022702

    Article  Google Scholar 

  • Robinson AR, Leslie WG, Theocharis A, Lascaratos A (2001) Mediterranean Sea circulation encyclopedia of ocean sciences. Academic Press, pp 1689–1706. doi:10.1006/rwos.2001.0376

  • Roether W, Schlitzer R (1991) Eastern Mediterranean deep water renewal on the basis of chlorofluoromethane and tritium. Dyn Atmos Oceans 15:333–354. doi:10.1016/0377-0265(91)90025-B

    Article  Google Scholar 

  • Roether W, Klein B, Manca B, Theocharis A, Kioroglou S (2007) Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog Oceanogr 74:540–571. doi:10.1016/j.pocean.2007.03.001

    Article  Google Scholar 

  • Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res 105:23927–23942. doi:10.1029/2000JC900089

    Article  Google Scholar 

  • Schroeder K, Ribotti A, Borghini M, Sorgente R, Perilli A, Gasparini GP (2008) An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophys Res Lett 35:L18605. doi:10.1029/2008GL035146

    Article  Google Scholar 

  • Sevault F, Somot S, Beuvier J (2009) A regional version of the NEMO ocean engine on the Mediterranean Sea: NEMOMED8 user’s guide. Note Cent 107, Groupe de Météorol. De Grande Echelle et Climat, CNRM, Toulouse, France

  • Smith W, Sandwell D (1997) Global sea floor topography from satellite altimetry and ship depth sounding. Science 277:1957–1962

    Google Scholar 

  • Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the twenty-first century using a high-resolution ocean circulation model. Clim Dyn 27:851–879

    Article  Google Scholar 

  • Somot S, Houpert L, Sevault F, Testor P, Bosse A, Taupier-Letage I, Bouin MN, Waldman R, Cassou C, Sanchez-Gomez E, Durrieu de Madron X, Adloff F, Nabat P, Herrmann M (2016) Characterizing, modelling and understanding the climatevariability of the deep water formation in the North-Western Mediterranean Sea. Clim Dyn. doi:10.1007/s00382-016-3295-0

    Google Scholar 

  • Soto-Navarro J, Somot S, Sevault F, Beuvier J, Criado-Aldeanueva F, Garcia-Lafuente J, Beranger K (2015) Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: volume transport and thermohaline properties of the outflow. Clim Dyn 44:1277–1292. doi:10.1007/s00382-014-2179-4

    Article  Google Scholar 

  • Stanev EV, Peneva EL (2002) Regional sea level response to global climate change: Black Sea examples. Glob Planet Changes 32:33–47. doi:10.1016/S0921-8181(01)00148-5

    Article  Google Scholar 

  • Stanev EV, Le Traon PY, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcing: analysis of altimeter and surface data for the Black Sea. J Geophys Res 105:17203–17216. doi:10.1029/1999JC900318

    Article  Google Scholar 

  • Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, London

    Book  Google Scholar 

  • Ursella L, Kovačević V, Gačić M (2011) Footprints of mesoscale eddy passages in the Strait of Otranto (Adriatic Sea). J Geophys Res 116:C04005. doi:10.1029/2010JC006633

    Article  Google Scholar 

  • Vesanto J, Himberg J, Alhoniemi E, Parhankangas (2000) SOM toolbox for Matlab 5, technical report. Helsinki University of Technology, Helsinki

  • Vested HJ, Berg P, Uhrenholdt T (1998) Dense water formation in the Northern Adriatic. J Mar Syst 18:135–160

    Article  Google Scholar 

  • Vilibić I (2003) An analysis of dense water production on the North Adriatic shelf. Estuar Coast Shelf Sci 56:697–707. doi:10.1016/S0272-7714(02)00277-9

    Article  Google Scholar 

  • Vilibić I, Orlić M (2001) An estimation of water mass fractions in the South Adriatic. Rapports et proces-verbaux des réunions CIESMM, 36, 87

  • Vilibić I, Orlić M (2002) Adriatic water masses, their rates of formation and transport through the Otranto Strait. Deep-Sea Res I 49:1321–1340

    Article  Google Scholar 

  • Vilibić I, Šantić D (2008) Deep water ventilation traced by Synechococcus cyanobacteria. Ocean Dyn 58:119–125. doi:10.1007/s10236-008-0135-8

    Article  Google Scholar 

  • Vilibić I, Supić N (2005) Dense water generation on a shelf: the case of the Adriatic Sea. Ocean Dyn. doi:10.1007/s10236-005-0030-5

    Google Scholar 

  • Vilibić I, Grbec B, Supić N (2004) Dense water generation in the north Adriatic in 1999 and its recirculation along the Jabuka Pit. Deep-Sea Res I 51:1457–1474. doi:10.1016/j.dsr.2004.07.012

    Article  Google Scholar 

  • Vilibić I, Mihanović H, Šepić J, Matijević S (2011) Using self-organising maps to investigate long-term changes in deep Adriatic water patterns. Cont Shelf Res 31:695–711. doi:10.1016/j.csr.2011.01.007

    Article  Google Scholar 

  • Vilibić I, Matijević S, Šepić J, Kušpilić G (2012) Changes in the Adriatic oceanographic properties induced by the Eastern Mediterranean Transient. Biogeosciences 9:2085–2097. doi:10.5194/bg-9-2085-2012

    Article  Google Scholar 

  • Vilibić I, Šepić J, Proust N (2013) Weakening of the thermohaline circulation in the Adriatic Sea. Clim Res 55:217–225. doi:10.3354/cr01128

    Article  Google Scholar 

  • Vilibić I, Pištalo D, Šepić J (2015) Long-term variability and trends of relative geostrophic currents in the middle Adriatic. Cont Shelf Res 93:70–80. doi:10.1016/j.csr.2014.12.003

    Article  Google Scholar 

  • Vörösmarty C, Fekete B, Tucker B (1996) Global river discharge database, RivDis. U.N. Educ. Sci. and Cult. Organ., Paris. http://www.rivdis.sr.unh.edu/

  • Vrgoč N, Arneri E, Jukić-Peladić S, Krstulović Šifner S, Mannini P, Marčeta B, Osmani K, Piccinetti C, Ungaro N (2004) Review of current knowledge on shared demersal stocks of the Adriatic Sea. FAO-MiPAF Scientific Cooperation to Support Responsible Fisheries in the Adriatic Sea, AdriaMed Technical Documents, 12, 91 pp

  • Zore-Armanda M (1963) Les masses d’eau de la mer Adriatique. Acta Adriat 10:5–88

    Google Scholar 

  • Zore-Armanda M (1969) Water exchange between the Adriatic and the eastern Mediterranean. Deep-Sea Res 16:171–178

    Google Scholar 

  • Zore-Armanda M, Gačić M (1987) Effects of Bora on the circulation in the North Adriatic. Ann Geophys 5B:93–102

    Google Scholar 

Download references

Acknowledgments

We express our gratitude to all the oceanographers, technicians and crew members who were involved in data collection and to all team members who contributed to the execution of the ARPERA forcing and to the NEMOMED8 model run, particularly Jonathan Beuvier and Michel Déqué. Hrvoje Mihanović assisted with the application of the SOM method to the model outputs. The comments from the two anonymous reviewers are greatly appreciated. The work of Natalija Dunić was supported by the Croatian Science Foundation, which also supported the work of Jadranka Šepić and Ivica Vilibić through Grant IP-2014-09-5747 (project SCOOL). This work is a contribution to the HyMeX/Med-CORDEX initiative. The model evaluations can be downloaded from www.medcordex.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalija Dunić.

Additional information

This paper is a contribution to the special issue on Med-CORDEX, an international coordinated initiative dedicated to the multi-component regional climate modelling (atmosphere, ocean, land surface, river) of the Mediterranean under the umbrella of HyMeX, CORDEX, and Med-CLIVAR and coordinated by Samuel Somot, Paolo Ruti, Erika Coppola, Gianmaria Sannino, Bodo Ahrens, and Gabriel Jordà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunić, N., Vilibić, I., Šepić, J. et al. Dense water formation and BiOS-induced variability in the Adriatic Sea simulated using an ocean regional circulation model. Clim Dyn 51, 1211–1236 (2018). https://doi.org/10.1007/s00382-016-3310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3310-5

Keywords

Navigation