Skip to main content

Advertisement

Log in

Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The equatorial Atlantic is marked by significant interannual variability in sea-surface temperature (SST) that is phase-locked to late boreal spring and early summer. The role of the atmosphere in this phase locking is examined using observations, reanalysis data, and model output. The results show that equatorial zonal surface wind anomalies, which are a main driver of warm and cold events, typically start decreasing in June, despite SST and sea-level pressure gradient anomalies being at their peak during this month. This behavior is explained by the seasonal northward migration of the intertropical convergence zone (ITCZ) in early summer. The north-equatorial position of the Atlantic ITCZ contributes to the decay of wind anomalies in three ways: (1) horizontal advection associated with the cross-equatorial winds transports air masses of comparatively low zonal momentum anomalies from the southeast toward the equator. (2) The absence of deep convection leads to changes in vertical momentum transport that reduce the equatorial wind anomalies at the surface, while anomalies aloft remain relatively strong. (3) The cross-equatorial flow is associated with increased total wind speed, which increases surface drag and deposit of momentum into the ocean. Previous studies have shown that convection enhances the surface wind response to SST anomalies. The present study indicates that convection also amplifies the surface zonal wind response to sea-level pressure gradients in the western equatorial Atlantic, where SST anomalies are small. This introduces a new element into coupled air-sea interaction of the tropical Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrom 4:1147–1167

    Article  Google Scholar 

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132–1161. doi:10.1002/qj.2063

    Article  Google Scholar 

  • Bates SC (2008) Coupled ocean–atmosphere interaction and variability in the tropical Atlantic Ocean with and without an annual cycle. J Clim 21:5501–5523

    Article  Google Scholar 

  • Bates SC (2010) Seasonal influences on coupled ocean–atmosphere variability in the tropical Atlantic Ocean. J Clim 23:582–604

    Article  Google Scholar 

  • Biasutti M, Battisti DS, Sarachik ES (2003) The annual cycle over the Tropical Atlantic, South America, and Africa. J Clim 16:2491–2508

    Article  Google Scholar 

  • Biasutti M, Battisti DS, Sarachik ES (2005) Terrestrial influence on the annual cycle of the Atlantic ITCZ. J Clim 18:211–228

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Breugem WP, Hazeleger W, Haarsma RJ (2006) Multimodel study of tropical Atlantic variability and change. Geophys Res Lett. doi:10.1029/2006GL027831

    Google Scholar 

  • Carton JA, Huang B (1994) Warm events in the tropical Atlantic. J Phys Oceanogr 24:888–903

    Article  Google Scholar 

  • Chang P et al (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174

    Article  Google Scholar 

  • Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS (2001) Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific. J Clim 14:1479–1498

    Article  Google Scholar 

  • Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in topical ocean regions. Clim Dyn 18:403–420

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2010) Equatorial Atlantic interannual variability: the role of heat content. J Geophys Res. doi:10.1029/2010JC006304

    Google Scholar 

  • Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and world-wide sea temperatures. Nature 320:602–607

    Article  Google Scholar 

  • Foltz GR, McPhaden MJ (2010) Abrupt equatorial wave-induced cooling of the Atlantic cold tongue in 2009. Geophys Res Lett 37:L24605. doi:10.1029/2010GL045522

    Google Scholar 

  • Frierson DMW, Hwang Y-T (2012) Extratropical influence on ITCZ shifts in slab ocean simulations of global warming. J Clim 25:720–733

    Article  Google Scholar 

  • Fuckar NS, Xie S-P, Farneti R, Maroon E, Frierson DMW (2013) Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J Clim 26:4612–4629

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26:1593–1596

    Article  Google Scholar 

  • Huang B, Shukla J (2005) Ocean–atmosphere interactions in the tropical and subtropical Atlantic Ocean. J Clim 18:1652–1672

    Article  Google Scholar 

  • Huang B, Schopf PS, Shukla J (2004) Intrinsic ocean-atmosphere variability of the tropical Atlantic Ocean. J Clim 17:2058–2077

    Article  Google Scholar 

  • Jin F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142

    Article  Google Scholar 

  • Li T, Wang B, Chang C-P, Zhang Y (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135

    Article  Google Scholar 

  • Lindzen RS, Nigam S (1987) On the role of the sea surface temperature gradients in forcing the low-level winds and convergence in the tropics. J Atmos Sci 44:2418–2436

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2012) On the inconsistent relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303

    Article  Google Scholar 

  • Lübbecke JF, Böning CW, Keenlyside NS, Xie S-P (2010) On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. J Geophys Res 115(C9):C09015. doi:10.1029/2009JC005964

    Article  Google Scholar 

  • Marshall J, Donohoe A, Ferreira D, McGee D (2014) The ocean’s role in setting the mean position of the inter-tropical convergence zone. Clim Dyn 42:1967–1979

    Article  Google Scholar 

  • Matsuno T (1966) Quasigeostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Article  Google Scholar 

  • McGregor S, Timmermann A, Schneider N, Stuecker MF, England MH (2012) The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak S (1998) ENSO theory. J Geophys Res 103:14261–14290

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Okumura Y, Xie S-P (2004) Interaction of the Atlantic equatorial cold tongue and African monsoon. J Clim 17:3588–3601

    Article  Google Scholar 

  • Philander SGH (1986) Unusual conditions in the tropical Atlantic Ocean in 1984. Nature 322:236–238

    Article  Google Scholar 

  • Philander SGH, Gu D, Halpern D, Lambert G, Lau NC, Li T, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9:2958–2972

    Article  Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  • Polo I, Lazar A, Rodriguez-Fonseca B, Arnault S (2008) Oceanic Kelvin waves and tropical Atlantic intraseasonal variability: 1. Kelvin wave characterization. J Geophys Res. doi:10.1029/2007JC004495

    Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Richter I, Xie S-P (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Komori N, Yamagata T (2010) On the triggering of Benguela Niños: remote equatorial versus local influences. Geophys Res Lett 37:L20604. doi:10.1029/2010GL044461

    Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47

    Google Scholar 

  • Richter I, Xie S-P, Behera SK, Doi T, Masumoto Y (2014a) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn 42:171–188. doi:10.1007/s00382-012-1624-5

    Article  Google Scholar 

  • Richter I, Behera SK, Doi T, Taguchi B, Masumoto Y, Xie S-P (2014b) What controls equatorial Atlantic winds in boreal spring? Clim Dyn 43:3091–3104

    Article  Google Scholar 

  • Saji HN, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  • Small RJ, deSzoeke SP, Xie S-P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319

    Article  Google Scholar 

  • Stockdale TN, Balmaseda MA, Vidard A (2006) Tropical Atlantic SST prediction with coupled ocean-atmosphere GCMs. J Clim 19:6047–6061

    Article  Google Scholar 

  • Vecchi GA (2006) The termination of the 1997–98 El Niño. Part II: mechanisms of atmospheric change. J Clim 19:2647–2664. doi:10.1175/JCLI3780.1

    Article  Google Scholar 

  • Wallace JM, Mitchell TP, Deser C (1989) The influence of sea surface temperature on surface wind in the eastern tropical Pacific: seasonal and interannual variability. J Clim 2:1492–1499

    Article  Google Scholar 

  • Webster PJ (1981) Mechanisms determining the atmospheric response to large-scale sea surface temperature anomalies. J Atmos Sci 38:554–571

    Article  Google Scholar 

  • Webster PJ, Moore A, Loschnigg J, Leban M (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Xie S-P (2004a) Satellite observations of cool ocean–atmosphere interaction. Bull Am Meteorol Soc 85:195–208

    Article  Google Scholar 

  • Xie S-P (2004b) The shape of continents, air–sea interaction, and the rising branch of the Hadley circulation. In: Diaz HF, Bradley RS (eds) The Hadley circulation: past, present and future. Kluwer Academic Publishers, Dordrecht, pp 121–152

    Chapter  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie S-P, Carton JA (eds) Earth climate: the ocean–atmosphere interaction, geophysical monograph, vol 147. AGU, Washington, DC, pp 121–142

    Chapter  Google Scholar 

  • Zebiak SE (1986) Atmospheric convergence feedback in a simple model for El Niño. Mon Weather Rev 114:1263–1271

    Article  Google Scholar 

  • Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zebiak SE, Cane A (1987) A model El Niño-Southern oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Noel Keenlyside and Tim Li for helpful discussions. The two anonymous reviewers are thanked for their constructive comments that helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Richter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, I., Xie, SP., Morioka, Y. et al. Phase locking of equatorial Atlantic variability through the seasonal migration of the ITCZ. Clim Dyn 48, 3615–3629 (2017). https://doi.org/10.1007/s00382-016-3289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3289-y

Keywords

Navigation