Skip to main content

Advertisement

Log in

Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989–2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model’s skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP et al (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4(6):1147–1167

    Article  Google Scholar 

  • Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:D05108. doi:10.1029/2004JD004,721

    Article  Google Scholar 

  • Cha DH, Lee DK (2009) Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J Geophys Res 114:D14108. doi:10.1029/2008JD011176

    Article  Google Scholar 

  • Cha DH, Jin CS, Lee DK, Kuo YH (2011) Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J Geophys Res Atmos 116(D10):1984–2012

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system Part I: model implementation and sensitivity. Mon Wea Rev 129(4):569–585

    Article  Google Scholar 

  • Collins WD, Rash PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR community atmosphere model (CAM 3.0). NCAR technical note NCAR/TN-464+STR, NCAR

  • Dan L, Cao F, Gao R (2015) The improvement of a regional climate model by coupling a land surface model with eco-physiological processes: a case study in 1998. Clim Change 129(3–4):457–470

    Article  Google Scholar 

  • Davies HC (1976) Lateral boundary formulation for multilevel prediction models. Q J R Meteor Soc 102(432):405–418

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137(656):553–597

    Article  Google Scholar 

  • Ding Y-H, Liu Y-M, Shi X-L et al (2006) Multi-year simulations and experimental seasonal predictions for rainy seasons in China by using a nested regional climate model (RegCM-NCC) part II: the experiment seasonal prediction. Adv Atmos Sci 23(4):487–503

    Article  Google Scholar 

  • Dulière V, Zhang Y, Salathé EP Jr (2011) Extreme precipitation and temperature over the US Pacific Northwest: a comparison between observations, reanalysis data, and regional models. J Clim 24(7):1950–1964

    Article  Google Scholar 

  • Feser F (2006) Enhanced detectability of added value in limited-area model results separated into different spatial scales. Mon Weather Rev 134(8):2180–2190

    Article  Google Scholar 

  • Feser F, Rockel B, Storch HV, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92(9):1181–1192

    Article  Google Scholar 

  • Fu C-B, Zeng Z-M (1997) Monsoon regions: the areas with the largest precipitation variability in the world. Chin Sci Bull 42(21):2306–2309

    Google Scholar 

  • Fu C-B, Wang S, Xiong Z et al (2005) Regional climate model intercomparison project for Asia. Bull Am Meteorol Soc 86:257–266. doi:10.1175/BAMS-86-2-257

    Article  Google Scholar 

  • Gao X, Shi Y, Zhang D, Giorgi F (2012) Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin Sci Bull 57(10):1188–1195

    Article  Google Scholar 

  • Gao Y, Wang H, Jiang D (2015) An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in Pan-Asian monsoon region. Int J Climatol. doi:10.1002/joc.4245

    Google Scholar 

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40(1):467

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999a) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352. doi:10.1029/98JD02072

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999b) Tests of precipitation parameterizationavailable in the latest version of the NCAR regional climate model (RegCM) over the continental US. J Geophys Res 104:6353–6376

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Glisan JM, GutowskiJr WJ, Cassano JJ, Higgins ME (2013) Effects of spectral nudging in WRF on Arctic temperature and precipitation simulations. J Clim 26(12):3985–3999

    Article  Google Scholar 

  • Gong H, Wang L, Chen W, Wu R, WeiK Cui X (2014) The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J Clim 27(4):1659–1678

    Article  Google Scholar 

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37(7–8):1551–1564

    Article  Google Scholar 

  • Hong SY, Chang E-C (2012) Spectral nudging sensitivity experiments in a regional climate model. Asia Pac J Atmos Sci 48(4):345–355

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

    Article  Google Scholar 

  • Hui P, Tang J, Wang S, Wu J, Kang Y (2014) Future climate projection under IPCC A1B scenario in the source region of Yellow River with complex topography using RegCM3. J Geophys Res Atmos 119(19):11–205

    Article  Google Scholar 

  • Jiang D, Tian Z (2013) East Asian monsoon change for the 21st century: results of CMIP3 and CMIP5 models. Chin Sci Bull 58(12):1427–1435

    Article  Google Scholar 

  • Jones C, Giorgi F, Asrar G (2011) The coordinated regional downscaling experiment: CORDEX—an international downscaling link to CMIP5. CLIVAR Exchanges No. 56, International CLIVAR Project Office, Southampton United Kingdom, pp 34–40

  • Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kanamaru H, Kanamitsu M (2007) Scale-selective bias correction in a downscaling of global analysis using a regional model. Mon Weather Rev 135:334–350

    Article  Google Scholar 

  • Kang HS, Cha DH, Lee DK (2005) Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. J Geophys Res 110:D10105. doi:10.1029/2004JD005266

    Article  Google Scholar 

  • Laprise R, Kornic D, Rapaic M, Separovic L, Leduc M, Nikiema O, Di Luca A, Diaconescu EP, Alexandru A, Lucas-Picher Ph, de Elia R, Caya D, Biner S (2012) Considerations of domain size and large-scale driving for nested regional climate models: impact on internal variability and skill at developing small-scale details. In: Berger A, Mesinger F, Sijacki DJ (eds) Climate change: inferences from paleoclimate and regional aspects, proceedings of the Milutin Milankovitch 130th anniversary symposium. Belgrade, 22–25 September 2009. Springer, Part 4, pp 181–199. doi: 10.1007/978-3-7091-0973-1_14

  • Leduc M, Laprise R (2009) Regional climate model sensitivity to domain size. Clim Dyn 32(6):833–854

    Article  Google Scholar 

  • Lee DK, Cha DK, Kang HS (2004) Regional climate simulation of the 1998 summer flood over East Asia. J Meteorol Soc Jpn 82(6):1735–1753

    Article  Google Scholar 

  • Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research: needs and opportunities. Bull Am Meteorol Soc 84:89–95. doi:10.1175/BAMS-84-1-89

    Article  Google Scholar 

  • Lim KSS, Hong SY (2010) Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon Weather Rev 138:1587–1612

    Article  Google Scholar 

  • Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12(8):3601–3610

    Article  Google Scholar 

  • Loikith PC, Waliser DE, Lee H et al (2015) Evaluation of large-scale meteorological patterns associated with temperature extremes in the NARCCAP regional climate model simulations. Clim Dyn 45(11–12):3257–3274

    Article  Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res. doi:10.1029/2003JD004495

    Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181

    Article  Google Scholar 

  • Niu X, Wang S, Tang J et al (2015) Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. Atmos, J Geophys Res

    Google Scholar 

  • Oh SG, Park JH, Lee SH, Suh MS (2014) Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J Geophys Res Atmos 119(6):2913–2927

    Article  Google Scholar 

  • Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge? Clim Dyn 44:1627–1644

    Article  Google Scholar 

  • Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Clim 25(20):7046–7066

    Article  Google Scholar 

  • PaiMazumder D, Done JM (2015) The roles of bias-correction and resolution in regional climate simulations of summer extremes. Clim Dyn 45(5–6):1565–1581

    Article  Google Scholar 

  • Park JH, Oh SG, Suh MS (2013) Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J Geophys Res Atmos 118(4):1652–1667

    Article  Google Scholar 

  • Pielke RA, Wilby R, Niyogi D, Hossain F, Dairuku K, Adegoke J, Kallos G, Seastedt T, Suding K (2012) Dealing with complexity and extreme events using a bottom-up, resource-based vulnerability perspective extreme events and natural hazards. AGU Monograph. doi:10.1029/2011GM001086

    Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Rockel B (2015) The regional downscaling approach: a brief history and recent advances. Curr Clim Change Rep 1(1):22–29

    Article  Google Scholar 

  • Scinocca JF, Kharin VV, Jiao Y et al (2016) Coordinated global and regional climate modeling. J Clim 29(1):17–35

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Tech. Note, NCAR/TN-475+STR, p 125

  • Song S, Tang J, Chen X (2011) Impacts of spectral nudging on the sensitivity of a regional climate model to convective parameterizations in East Asia. Acta Meteorol Sin 25:63–77

    Article  Google Scholar 

  • Spero TL, Otte MJ, Bowden JH, Nolte CG (2014) Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model. J Geophys Res Atmos 119(20):11–682

    Article  Google Scholar 

  • Storch HV, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673

    Article  Google Scholar 

  • Tang J-P, Song S, Wu J-A (2010) Impacts of the spectral nudging technique on simulation of the East Asian summer monsoon. Theor Appl Climatol 101(1–2):41–51

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges, and prospects. J Meteorol Soc Jpn 82:1599–1628. doi:10.2151/jmsj.82.1599

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O et al (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia Based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415

    Article  Google Scholar 

  • You Q, Kang S, Aguilar E et al (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36(11–12):2399–2417

    Article  Google Scholar 

  • Yu E, Sun J, Chen H, Xiang W (2014) Evaluation of a high-resolution historical simulation over China: climatology and extremes. Clim Dyn 45:2013–2031

    Article  Google Scholar 

  • Zhou T-J, Li Z-X (2002) Simulation of the East Asian summer monsoon by using a variable resolution atmospheric GCM. Clim Dyn 19(2):167–180

    Article  Google Scholar 

  • Zou L, Qian Y, Zhou T, Yang B (2014) Parameter tuning and calibration of RegCM3 with MIT–Emanuel Cumulus parameterization scheme over CORDEX East Asia domain. J Clim 27(20):7687–7701

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (41375075, 91425304 and 41575099), and part of the project National Basic Research and Development (973) Program of China (2011CB952004). The authors also acknowledge with thanks the ECMWF for providing the ERA-interim reanalysis data as driving fields in the simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Wang, S., Niu, X. et al. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Clim Dyn 48, 2339–2357 (2017). https://doi.org/10.1007/s00382-016-3208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3208-2

Keywords

Navigation