Skip to main content
Log in

Regime-based evaluation of cloudiness in CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model’s equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anderberg MR (1973) Cluster analysis for applications. Elsevier, New York

    Google Scholar 

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere–ocean climate models. Geophys Res Lett 39:L09712. doi:10.1029/2012GL051607

    Google Scholar 

  • Bodas-Salcedo A, Webb MJ, Bony S et al (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc 92:1023–1043. doi:10.1175/2011BAMS2856.1

    Article  Google Scholar 

  • Bony S, Webb M, Bretherton CS et al (2011) CFMIP: towards a better evaluation and understanding of clouds and cloud feedbacks in CMIP5 models. CLIVAR Exch 56(16):20–24

    Google Scholar 

  • Boucher O, Randall D, Artaxo P et al (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge; New York, pp 571–658

    Google Scholar 

  • Brenguier J-L, Pawlowska H, Schüller L et al (2000) Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J Atmos Sci 57:803–821. doi:10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2

    Article  Google Scholar 

  • Cho H-M, Zhang Z, Meyer K et al (2015) Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans. J Geophys Res Atmos 120:4132–4154. doi:10.1002/2015JD023161

    Article  Google Scholar 

  • Dolinar EK, Dong X, Xi B et al (2015) Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Clim Dyn 44:2229–2247. doi:10.1007/s00382-014-2158-9

    Article  Google Scholar 

  • Forster PM, Andrews T, Good P et al (2013) Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models. J Geophys Res Atmos 118:1139–1150. doi:10.1002/jgrd.50174

    Article  Google Scholar 

  • Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the Tropical Western Pacific. Geophys Res Lett 30:2082. doi:10.1029/2003GL018367

    Article  Google Scholar 

  • Jiang JH, Su H, Zhai C et al (2012) Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A-Train” satellite observations. J Geophys Res 117:D14105. doi:10.1029/2011JD017237

    Google Scholar 

  • Jin D, Oreopoulos L, Lee D (2016) Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Clim Dyn (accepted)

  • King MD, Menzel WP, Kaufman YJ et al (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41:442–458. doi:10.1109/TGRS.2002.808226

    Article  Google Scholar 

  • Klein SA, Jakob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531. doi:10.1175/1520-0493(1999)127<2514:VASOFC>2.0.CO;2

    Article  Google Scholar 

  • Klein SA, Zhang Y, Zelinka MD et al (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi:10.1002/jgrd.50141

    Article  Google Scholar 

  • L’Ecuyer TS, Stephens GL (2007) The tropical atmospheric energy budget from the TRMM perspective. Part II: evaluating GCM representations of the sensitivity of regional energy and water cycles to the 1998–99 ENSO cycle. J Clim 20:4548–4571. doi:10.1175/JCLI4207.1

    Article  Google Scholar 

  • Lauer A, Hamilton K (2013) Simulating clouds with global climate models: a comparison of CMIP5 results with CMIP3 and satellite data. J Clim 26:3823–3845. doi:10.1175/JCLI-D-12-00451.1

    Article  Google Scholar 

  • Li J-LF, Waliser DE, Stephens G et al (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118:8166–8184. doi:10.1002/jgrd.50378

    Article  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, pp 281–297

  • Mason S, Fletcher JK, Haynes JM et al (2015) A hybrid cloud regime methodology used to evaluate southern ocean cloud and shortwave radiation errors in ACCESS. J Clim 28:6001–6018. doi:10.1175/JCLI-D-14-00846.1

    Article  Google Scholar 

  • Masunaga H, Matsui T, Tao W-K et al (2010) Satellite data simulator unit: a multisensor, multispectral satellite simulator package. Bull Am Meteorol Soc 91:1625–1632. doi:10.1175/2010BAMS2809.1

    Article  Google Scholar 

  • Matsui T, Santanello J, Shi JJ et al (2014) Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling. J Geophys Res Atmos 119:8450–8475. doi:10.1002/2013JD021424

    Article  Google Scholar 

  • Nam C, Bony S, Dufresne J-L, Chepfer H (2012) The “too few, too bright” tropical low-cloud problem in CMIP5 models. Geophys Res Lett 39:L21801. doi:10.1029/2012GL053421

    Article  Google Scholar 

  • O’Dell CW, Wentz FJ, Bennartz R (2008) Cloud liquid water path from satellite-based passive microwave observations: a new climatology over the global oceans. J Clim 21:1721–1739. doi:10.1175/2007JCLI1958.1

    Article  Google Scholar 

  • Oreopoulos L, Rossow WB (2011) The cloud radiative effects of International Satellite Cloud Climatology Project weather states. J Geophys Res 116:D12202. doi:10.1029/2010JD015472

    Article  Google Scholar 

  • Oreopoulos L, Cho N, Lee D et al (2014) An examination of the nature of global MODIS cloud regimes. J Geophys Res Atmos 119:8362–8383. doi:10.1002/2013JD021409

    Article  Google Scholar 

  • Oreopoulos L, Cho N, Lee D, Kato S (2016) Radiative effects of global MODIS cloud regimes. J Geophys Res Atmos 121. doi:10.1002/2015JD024502

  • Pincus R, Batstone CP, Hofmann RJP et al (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res 113:D14209. doi:10.1029/2007JD009334

    Article  Google Scholar 

  • Pincus R, Platnick S, Ackerman SA et al (2012) Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators. J Clim 25:4699–4720. doi:10.1175/JCLI-D-11-00267.1

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72:2–20. doi:10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2

    Article  Google Scholar 

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287. doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

    Article  Google Scholar 

  • Rossow WB, Tselioudis G, Polak A, Jakob C (2005) Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys Res Lett 32:L21812. doi:10.1029/2005GL024584

    Article  Google Scholar 

  • Stephens GL, Vane DG, Boain RJ et al (2002) The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation. Bull Am Meteorol Soc 83:1771–1790. doi:10.1175/BAMS-83-12-1771

    Article  Google Scholar 

  • Stephens GL, Vane DG, Tanelli S et al (2008) CloudSat mission: performance and early science after the first year of operation. J Geophys Res 113:2156–2202. doi:10.1029/2008JD009982

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tselioudis G, Rossow W, Zhang Y, Konsta D (2013) Global weather states and their properties from passive and active satellite cloud retrievals. J Clim 26:7734–7746. doi:10.1175/JCLI-D-13-00024.1

    Article  Google Scholar 

  • Tsushima Y, Ringer MA, Webb MJ, Williams KD (2013) Quantitative evaluation of the seasonal variations in climate model cloud regimes. Clim Dyn 41:2679–2696. doi:10.1007/s00382-012-1609-4

    Article  Google Scholar 

  • Wang H, Su W (2015) The ENSO effects on tropical clouds and top-of-atmosphere cloud radiative effects in CMIP5 models. J Geophys Res Atmos 120:4443–4465. doi:10.1002/2014JD022337

    Article  Google Scholar 

  • Webb M, Senior C, Bony S, Morcrette J-J (2001) Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim Dyn 17:905–922

    Article  Google Scholar 

  • Williams KD, Tselioudis G (2007) GCM intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29:231–250. doi:10.1007/s00382-007-0232-2

    Article  Google Scholar 

  • Williams KD, Webb MJ (2009) A quantitative performance assessment of cloud regimes in climate models. Clim Dyn 33:141–157. doi:10.1007/s00382-008-0443-1

    Article  Google Scholar 

  • Williams KD, Ringer MA, Senior CA et al (2006) Evaluation of a component of the cloud response to climate change in an intercomparison of climate models. Clim Dyn 26:145–165. doi:10.1007/s00382-005-0067-7

    Article  Google Scholar 

  • Winker DM, Vaughan MA, Omar A et al (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol 26:2310–2323

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Lastly, funding by NASA’s Modeling Analysis and Prediction (MAP) program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daeho Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 211 kb)

Supplementary material 2 (PDF 2329 kb)

Appendix: Centroid distance relationship

Appendix: Centroid distance relationship

For model histogram data \(\left( { x_{i,1} , x_{i,2} , \ldots , x_{i,m} } \right)\) assigned to the kth regime whose reference centroid is \(\left( {\overline{y}_{1,k} , \overline{y}_{2,k} , \ldots ,\overline{y}_{m,k} } \right)\), where i and m indicate the member of a population N k , and the vector dimension (m = 42 in our study), respectively, the model’s own centroid \(\left( {\overline{x}_{1,k} , \overline{x}_{2,k} , \ldots , \overline{x}_{m,k} } \right)\) is defined as follows.

$$\overline{x}_{j,k} = \frac{1}{{N_{k} }}\mathop \sum \limits_{i = 1}^{{N_{k} }} x_{i,j} \quad {\text{where}}\quad j = [1,m]$$
(2)

In addition, the squared (Euclidean) distance of \(\left( { x_{i,1} , x_{i,2} , \ldots , x_{i,m} } \right)\) from its own centroid \(\left( {\overline{x}_{1,k} , \overline{x}_{2,k} , \ldots , \overline{x}_{m,k} } \right)\), the squared distance from the reference (ISCCP) centroid \(\left( {\overline{y}_{1,k} , \overline{y}_{2,k} , \ldots ,\overline{y}_{m,k} } \right)\), and the squared distance between the model centroid and the reference centroid are, respectively, as follows:

$${\text{DOC}}_{i,k}^{2} = \mathop \sum \limits_{j = 1}^{m} \left( {x_{i,j} - \overline{x}_{j,k} } \right)^{2}$$
(3)
$${\text{DRC}}_{i,k}^{2} = \mathop \sum \limits_{j = 1}^{m} \left( {x_{i,j} - \overline{y}_{j,k} } \right)^{2}$$
(4)
$$D_{k}^{2} = \mathop \sum \limits_{j = 1}^{m} \left( {\overline{x}_{j,k} - \overline{y}_{j,k} } \right)^{2}$$
(5)

Equation (4) can be rewritten as follows:

$$\begin{aligned} {\text{DRC}}_{i,k}^{2} & = \mathop \sum \limits_{j = 1}^{m} \left( {x_{i,j} - \overline{x}_{j,k} + \overline{x}_{j,k} - \overline{y}_{j,k} } \right)^{2} \\ & { = }\,{\text{DOC}}_{i,k}^{2} + D_{k}^{2} + 2\mathop \sum \limits_{j = 1}^{m} \left( {x_{i,j} - \overline{x}_{j,k} } \right) \cdot \left( {\overline{x}_{j,k} - \overline{y}_{j,k} } \right) \\ \end{aligned}$$
(6)

The mean squared distance from the reference centroid over population N k is as follows:

$$\overline{{{\text{DRC}}_{k}^{2} }} = \frac{1}{{N_{k} }}\mathop \sum \limits_{i = 1}^{{N_{k} }} {\text{DRC}}_{i,k}^{2}$$
(7)

Equation (7) can be rewritten using Eq. (6) as follows:

$$\begin{aligned} \overline{{{\text{DRC}}_{k}^{2} }} & = \frac{1}{{N_{k} }}\mathop \sum \limits_{i = 1}^{{N_{k} }} \left[ {DOC_{i,k}^{2} + D_{k}^{2} + 2\mathop \sum \limits_{j = 1}^{m} \left( {x_{i,j} - \overline{x}_{j,k} } \right) \cdot \left( {\overline{x}_{j,k} - \overline{y}_{j,k} } \right)} \right] \\ & = \frac{1}{{N_{k} }}\mathop \sum \limits_{i = 1}^{{N_{k} }} DOC_{i,k}^{2} + D_{k}^{2} + 2\mathop \sum \limits_{j = 1}^{m} \left( {\overline{x}_{j,k} - \overline{y}_{j,k} } \right) \\ & \quad \times \frac{1}{{N_{k} }}\mathop \sum \limits_{i = 1}^{{N_{k} }} \left( {x_{i,j} - \overline{x}_{j,k} } \right) \\ \end{aligned}$$
(8)

The third term of right side of Eq. (8) is zero because of Eq. (2). In addition, if we define the first right term of Eq. (8) as the mean squared distance of model histograms from their own centroid for the kth regime, \(\overline{{{\text{DOC}}_{k}^{2} }}\), Eq. (8) can be simplified to yield Eq. (1):

$$\overline{{{\text{DRC}}_{k}^{2} }} = \overline{{{\text{DOC}}_{k}^{2} }} + D_{k}^{2}$$
(1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Oreopoulos, L. & Lee, D. Regime-based evaluation of cloudiness in CMIP5 models. Clim Dyn 48, 89–112 (2017). https://doi.org/10.1007/s00382-016-3064-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3064-0

Keywords

Navigation