Skip to main content

Advertisement

Log in

Regional impact of the Armenian highland as an elevated heat source: ERA-Interim reanalysis and observations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The heat-driven plain–plateau circulation producing strong summertime winds in Yerevan has been examined. The study indicates that the formation of plain–plateau circulation over the Armenian Highland is the combined product of large-scale and local circulations. There is significant enhancement of the westerly subtropical jet over the study region, Caspian Sea and further to the east in the upper troposphere in days with severe wind gusts in Yerevan. Further, the influence of major monsoon systems (Indian and African) on the plain–plateau circulation over the Armenian Highland is considered in this study. Both observations and ERA-Interim reanalysis data show the existence of intense heat source over the southeastern and southern parts of the Armenian Highland which produces an extra daytime warming exceeding 2.1 °C on average at the ground surface during days with severe gusts in Yerevan. This warm center is maintained through 700 hPa level and it disappears in the middle and upper troposphere. The plateau atmospheric boundary layer can extend beyond 4,000 m above mean sea level (up to the middle troposphere) during the afternoon. By contrast, exposed mountain ranges stretching along the Black and Caspian seas are characterized by significant negative temperature differences. It should be noted that ERA-Interim reanalysis data strongly underestimate the significant negative differences in mean daytime temperatures over northeastern, southeastern parts of Armenia and over Sevan Lake basin found in observed data. The results suggest intensification of the plain–plateau circulation over the Armenian Highland induced by recent surface warming over the study region. Temperature projections over the study region for the twenty-first century show that the enhancement of the plain–plateau circulation can be expected under future climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Banta RM (1984) Daytime boundary-layer evolution over mountainous terrain. Part I: observations of the dry circulations. Mon Weather Rev 112:340–356

    Article  Google Scholar 

  • Berrisford P, Dee D, Poli P, Brugge R, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S, Simmons A (2011) The ERA-interim archive: Version 2.0. ERA Report Series 1:23

  • Birch CE, Parker DJ, Marsham JH, Devine GM (2012) The effect of orography and surface albedo on stratification in the summertime Saharan boundary layer: dynamics and implications for transport. Geophys Res Lett 117:1–13

    Article  Google Scholar 

  • Chen H, Suna J, Chen X (2013) Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models. Int. J. Climatol. doi:10.1002/joc.3871

  • Dee D, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, H´aolm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Elguindi N, Somot S, De´que´ M, Ludwig W (2011) Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: impact of climate model resolution. Clim Dyn 36:205–228

    Article  Google Scholar 

  • Elliott D, Schwartz M, Scott G, Haymes S, Heimiller D, George R (2003) Wind energy resource Atlas of Armenia. U.S. Agency for International Development, p 169

  • Evans JP, Smith RB, Oglesby RJ (2004) Middle East climate simulation and dominant precipitation processes. Int J Climatol 24:1671–1694

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LL, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gevorgyan A (2012) Verification of daily precipitation amount forecasts in Armenia by ERA-Interim model. Int J Climatol 33(12):2706–2712

    Google Scholar 

  • Gevorgyan A (2013) Main types of synoptic processes and circulation types generating heavy precipitation events in Armenia. Meteorol Atmos Phys 122:91–102

    Article  Google Scholar 

  • Gevorgyan A (2014) Surface and tropospheric temperature trends in Armenia. Int J Climatol. doi:10.1002/joc.3928

  • Gevorgyan A, Melkonyan H, Aleksanyan T, Iritsyan A, Khalatyan Ye (2014) Temperature change projection in Armenia: CCSM4 model. Theor Appl Climatol (submitted)

  • Hafner TA, Reinhardt Weisel EL, Fimpel HP (1987) Boundary layer aspects and elevated heat source effects of the Alps. Meteorol Atmos Phys 36:61–73

    Article  Google Scholar 

  • Luo H, Yanai M (1984) The large-scale circulation and heat sources over the Tibetian plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets. Mon Weather Rev 112:966–989

    Article  Google Scholar 

  • Meleshko VP, Govorkova VA (2013) Performance of CMIP3 and CMIP5 models in simulation of current climate. Trans Voeykov Main Geophys Obs 568:26–51

    Google Scholar 

  • Melkonyan G, Ovsepyan A, Irityan A, Khalatyan E, Gevorgyan A (2013) Climate change assessment in Armenia. Trans Inst Hydrometeorol Georgian Tech Univ 119:33–37

    Google Scholar 

  • Melkonyan H, Gevorgyan A, Iritsyan A, Khalatyan Ye, Aleksanyan T (2014) Updated climate change scenarios for Armenia. Trans. Yerevan State Univ. (Submitted)

  • Messager C, Parker DJ, Reitebuch O, Agusti-Panareda A, Taylor CM, Cuesta J (2010) Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: observations and analyses from the research flights of 14 and 17 July 2006. Q J R Meteorol Soc 136:107–124

    Article  Google Scholar 

  • Mkhitaryan A, Zoryan Z (1974) Simulation of meteorological fields over Armenia for wind forecasts in the lower troposphere. Transcaucasus Hydrometeorological Research Institute, p 32

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Pavlova TV, Kattsov VM (2013) World ocean ice cover as simulated with CMIP5 models. Trans Voeykov Main Geophys Obs 568:7–26

    Google Scholar 

  • Rao GV, Erdogan S (1989) The atmospheric heat source over the Bolivian plateau for a mean January. Bound Layer Meteorol 46:13–33

    Article  Google Scholar 

  • Regional Climate Change Impacts Study for the South Caucasus Region (2011) Tbilisi

  • Rizou D, Flocas HA, Bartzokas A, Helmis CG (2013) On the link between Indian summer monsoon and the Etesian pattern over the Aegean Sea. Proceedings of the 13th International Conference on Environmental Science and Technology: Athens, Greece, 5–7 September 2013

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Sato T, Kimura F (2005) The impact of diabatic heating over the Tibetan plateau upon northeastern Asia arid region. Geophys Res Lett 32(5):966–970

    Google Scholar 

  • Selezneva ES (1958) On formation of northward summertime winds in the Sevan Lake basin. Proc Voeikov Main Geophys Obs 78:77–83

    Google Scholar 

  • Smith RK, Spengler T (2011) The dynamics of heat lows over elevated terrain. Q J R Meteorol Soc 137:250–563

    Article  Google Scholar 

  • Sporyshev PV, Govorkova VA (2013) Temperature changes in Russia according to observations and model simulations with a separate account of anthropogenic and natural external impacts. Trans Voeykov Main Geophys Obs 568:51–80

    Google Scholar 

  • Traub M, Lelieveld J (2003) Cross-tropopause transport over the eastern Mediterranean. J Geophys Res 180. doi:10.1029/2003JD003754

  • Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40:1103–1123

    Article  Google Scholar 

  • von Hann J (1915) Lehrbuch der Meteorologie (Textbook of Meteorology). Tauchnitz Verlag: p 847

  • Wang L, Chen W (2013) A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. Int J Climatol 34:2059. doi:10.1002/joc.3822

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Elsevier, Burlington

    Google Scholar 

  • Yang K, Koike T, Fujii H, Tamura T (2004) The daytime evolution of the atmospheric boundary layer and convection over the Tibetian plateau: observations and simulations. J Meteorol Soc Jpn 82(6):1777–1792

    Article  Google Scholar 

  • Ye D (1981) Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) plateau and its neighboring. Bull Am Meteorol Soc 62(1):14–19

    Article  Google Scholar 

  • Zaitchik BF, Evans JP, Smith RB (2007) Regional impact of an elevated heat source: the Zagros plateau of Iran. J Clim 20:4133–4146

    Article  Google Scholar 

  • Zangl G, Chico SG (2006) The thermal circulation of s Grand Plateau: sensitivity to the height, width, and shape of the plateau. Mon Weather Rev 134:2581–2600

    Article  Google Scholar 

  • Zarrin A, Ghaemi H, Azadi M, Mofidi A, Mirzaei E (2011) The effect of the Zagros mountains on the formation and maintenance of the Iran anticyclone using RegCM4. Meteorol Atmos Phys 112:91–100

    Article  Google Scholar 

  • Zhang X, Aguilar E, Sensoy S, Melkonyan H et al (2005) Trends in Middle East climate extreme indices from 1950 to 2003. Geophys Res Lett 110:D22. doi:10.1029/2005JD006181

    Google Scholar 

  • Ziv B, Saaroni H, Alpert P (2004) The factors governing the summer regime of the eastern Mediterranian. Int J Climatol 24:1859–1871

    Article  Google Scholar 

  • Zoryan Z (1974) Prediction of summertime severe winds in Yerevan. Transcaucasus Hydrometeorological Research Institute, p 47

Download references

Acknowledgments

The author thank the two anonymous referees and the editor for their contribution to the significant improvement of the quality of the paper. We are grateful to our colleague Mr Taron Aleksanyan for his help in the preparation of Figs. 1 and 11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Gevorgyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1600 kb)

Supplementary material 2 (TIFF 3208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gevorgyan, A., Melkonyan, H. Regional impact of the Armenian highland as an elevated heat source: ERA-Interim reanalysis and observations. Clim Dyn 44, 1541–1565 (2015). https://doi.org/10.1007/s00382-014-2236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2236-z

Keywords

Navigation