Skip to main content

Advertisement

Log in

Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the semiarid interior of the Iberian Peninsula, the topographic insulation from the surrounding seas promotes the role of internal sources of moisture and water recycling in the rainfall regime. In inland Iberia, the annual cycle of precipitation often has a distinctive peak in the springtime, when evapotranspiration (ET) is the highest, in contrast to the coastal areas, where it is more closely related to the external moisture availability and synoptic forcing, with a maximum in winter-autumn and a pronounced minimum in the summer. In this work we investigate the role of land surface water fluxes in the intensification of the hydrological cycle in the Iberian spring. We used data from 5 km resolution WRF-ARW model simulations over the Iberian Peninsula for eleven months of May (2000–2010). To bring out the effect of ET fluxes, we conducted experiments where ET water over land was removed from the system. Our findings indicate that the impact of ET on precipitation is on average very large (37 % increase). The impact is particularly strong in the interior north and northeast areas where the observed annual rainfall cycle has a peak in May, suggesting that the role of surface water fluxes is very important there. To investigate whether this role is as a water source or to amplify precipitation dynamics, we computed the recycling ratio analytically from the model data. In addition, we developed a procedure to quantify the amplification impact by comparing the recycling ratio and the relative change in precipitation between control and experiments with ET removed. Results show that the role of surface water fluxes on precipitation depends on large-scale forcing and moisture advection. When the synoptic forcing and moisture advection are strong, such as in fronts associated to Atlantic storms, the impact of ET fluxes is small. When there is potential for convection, as is commonly the case of late spring in the Iberian Peninsula, ET fluxes have a significant impact. Surface moisture fluxes moisten the boundary layer and increase moist static energy, strengthening convective processes, and their role goes from being a primary water source for precipitation (recycling) to have mostly an amplification effect as external moisture availability increases. Our findings show that for the eleven simulated May cases over the Iberian Peninsula, the role of ET fluxes in activating recycling is important and explains 27–58 % of their total impact on precipitation, depending on the method used to calculate the recycling ratio. This indicates that the complementary effect of ET on amplifying rainfall from external sources of moisture is comparable in magnitude to the recycling mechanism and important as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Climate 17(13):2493–2525

    Article  Google Scholar 

  • Beljaars ACM, Viterbo P, Miller MJ, Betts AK (1996) The anomalous rainfall over the United States during July 1993: sensitivity to land surface parameterization and soil moisture anomalies. Mon Weather Rev 124:362–383

    Article  Google Scholar 

  • Bell GD, Bosart LF (1989) A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Mon Weather Rev 117:2142–2163

    Article  Google Scholar 

  • Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res 116:D20101. doi:10.1029/2010JD015481

    Article  Google Scholar 

  • Berrisford P et al (2011) The ERA-interim archive, 2nd edn. ERA Report Series No. 1

  • Bisselink B, Dolman AJ (2008) Precipitation recycling: moisture sources over Europe using ERA-40 data. J Hydrometeorol 9:1073–1083. doi:10.1175/2008JHM962.1

    Article  Google Scholar 

  • Bisselink B, Dolman AJ (2009) Recycling of moisture in Europe: contribution to variability in very wet and dry years. Hydrol Earth Syst Sci 13:1685–1697

    Article  Google Scholar 

  • Bosilovich MG, Schubert SD (2002) Water vapour tracers as diagnostics of the regional hydrologic cycle. J Hydrometeor 3:149–165

    Article  Google Scholar 

  • Brubaker KL, Entekhabi D, Eagleson PS (1993) Estimation of continental precipitation recycling. J Climate 6:1077–1089

    Article  Google Scholar 

  • Budyko MI (1974) Climate and life. International geophysics series, vol 18. Academic Press, San Diego, 508 pp

  • Burde GI (2006) Bulk recycling models with incomplete vertical mixing. Part I: conceptual framework and models. J Climate 19:1461–1472

    Article  Google Scholar 

  • Burde GI, Zangvil A (2001) The estimation of regional precipitation recycling. Part I: review of recycling models. J Climate 14:2497–2508

    Article  Google Scholar 

  • Burde GI, Zangvil A, Lamb PJ (1996) Estimating the role of local evaporation in precipitation for a two-dimensional region. J Climate 9:1328–1338

    Article  Google Scholar 

  • Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2012) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol. doi:10.1002/joc.3616

    Google Scholar 

  • Castro M, Martin-Vide J, Alonso S (2005) The climate of Spain: past, present and scenarios for the 21st century: a preliminary assessment of the impacts in Spain due to the effect of climate change. In: Moreno JM (ed) Spanish Ministry of the Environment, ECCE Project Final Rep, pp 1–62

  • Chen F, Dudhia J (2001a) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system: part I: model implementation and sensitivity. Mon Weather Rev 129(4):569–585

    Article  Google Scholar 

  • Chen F, Dudhia J (2001b) Coupling an advanced land surface-hidrology model with the Penn State-NCAR MM5 modeling system: part II: preliminary model validation. Mon Weather Rev 129(4):587–604

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dirmeyer PA, Brubaker KL (2007) Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapour. J Hydrometeor 8:20–37

    Article  Google Scholar 

  • Dirmeyer PA, Brubaker KL, DelSole T (2009) Import and export of atmospheric water vapor between nations. J Hydrol 365(1–2):11–22. doi:10.1016/j.jhydrol.2008.11.016

    Article  Google Scholar 

  • Dominguez F, Kumar P (2008) Precipitation recycling variability and ecoclimatological stability: a study using NARR data. Part I: Central US Plains ecoregion. J Climate 21:5165–5186

    Article  Google Scholar 

  • Dominguez F, Kumar P, Liang X, Ting M (2006) Impact of atmospheric moisture storage on precipitation recycling. J Climate 19:1513–1530

    Article  Google Scholar 

  • Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 40(20):3077–3107

    Article  Google Scholar 

  • Eltahir EAB, Bras LB (1994) Precipitation recycling in the Amazon basin. Q J R Meteorol Soc 120:861–880

    Article  Google Scholar 

  • Eltahir EAB, Bras LB (1996) Precipitation recycling. Rev Geophys 34:367–378

    Article  Google Scholar 

  • Fitzmaurice JA (2007) A critical Analysis of Bulk Precipitation Recycling Models. Ph.D. thesis, 162 pp, Massachusetts Institute of Technology, Massachusetts

  • Font-Tullot I (2000) Climatología de España y Portugal. Ediciones Universidad de Salamanca, Second edition

    Google Scholar 

  • García-Herrera R, Paredes D, Trigo RM, Trigo IF, Hernández E, Barriopedro D, Mendes MA (2007) The outstanding 2004/2005 drought in the Iberian Peninsula: associated atmospheric circulation. J Hydrometeor 8:483–498

    Article  Google Scholar 

  • Gerard L (2007) An integrated package for subgrid convection, clouds and precipitation compatible with meso-gamma scales. Q J R Meteorol Soc 00:1–19

    Google Scholar 

  • Gimeno L, Nieto R, Trigo RM, Vicente-Serrano SM, López-Moreno JI (2010) Where does the Iberian Peninsula moisture come from? An answer based on a lagrangian approach. J Hydrometeor 11:421–436. doi:10.1175/2009JHM1182.1

    Article  Google Scholar 

  • Herrera S, Gutiérrez J, Ancell R, Pons M, Frías M, Fernández J (2010) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85. doi:10.1002/joc.2256

    Article  Google Scholar 

  • Hohenegger C, Brockhaus P, Bretherton CS, Schär C (2009) The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J Climate 22:5003–5020

    Article  Google Scholar 

  • Hong S, Lim JJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteor Soc 42(2):129–151

    Google Scholar 

  • Jódar J, Carrera J, Cruz A (2010) Irrigation enhances precipitation at the mountains downwind. Hydrol Earth Syst Sci 14(10):2003–2010. doi:10.5194/hess-14-2003-2010

    Article  Google Scholar 

  • Kain HS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its aplications in convective precipitation. J Atmos Sci 47:2784–2802

    Article  Google Scholar 

  • Kain HS, Fritsch JM (1993) Convective parameterization for mesoscale models. In Emanuel KA, Raymond DJ (eds) The Kain-Fritsch scheme: the representation of cumulus convection in numerical models. American Meteorological Society, 246 pp

  • Koster RD, Suarez MJ (2001) Soil Moisture memory in climate models. J Hydrometeor 2:558–570

    Article  Google Scholar 

  • Koster RD et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140

    Article  Google Scholar 

  • Lettau H, Lettau K, Molion LCB (1979) Amazonia’s hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects. Mon Wea Rev 107:227–238

    Article  Google Scholar 

  • Martin-Vide J, Olcina-Cantos J (2001): Climas y tiempos de España. Alianza Editorial. Madrid, 258 pp, ISBN: 84-206-5777-8

  • Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res-Atmospheres 109:D13104

    Article  Google Scholar 

  • Miguez-Macho G, Stenchikov GL, Robock A (2005) Regional climate simulations over North America: interaction of local processes with improved large-scale flow. J Climate 18:1227–1246

    Article  Google Scholar 

  • Millan MM, Estrela MJ, Miro J (2005) Rainfall components: variability and spatial distribution in a mediterranean area (Valencia Region). J Climate 18(14):2682–2705

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Nieto R, Gimeno L, de la Torre L, Ribera P, Gallego D, García R, García JA, Nuñez M, Redaño A, Lorente J (2005) Climatological features of cut-off low systems in the Northern Hemisphere. J Climate 18:3085–3113

    Article  Google Scholar 

  • Nieto R, Gimeno L, de la Torre L, Ribera P, Barriopedro D, Garcia-Herrera R, Serrano A, Gordillo A, Redaño A, Lorente J (2007) Interannual variability of cut-off low systems over the European sector: the role of blocking and the northern hemisphere circulation modes. Meteorol Atmos Phys 96:85–101

    Article  Google Scholar 

  • Paegle J, Mo KC, Nogués-Paegle J (1996) Dependence of simulated precipitation on surface evaporation during the 1993 United States Summer Floods. Mon Weather Rev 124:345–361

    Article  Google Scholar 

  • Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39:151–177

    Article  Google Scholar 

  • Rodriguez-Puebla C, Encinas AH, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18:299–316

    Article  Google Scholar 

  • Santos J, Corte-Real J, Leite S (2007) Atmospheric large-scale dynamics during the 2004/2005 winter drought in Portugal. Int J Climatol 27:571–586

    Article  Google Scholar 

  • Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: a process study with a regional climate model. J Climate 12:722–741

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443(7108):205–209

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161

    Article  Google Scholar 

  • Shukla J, Mintz Y (1982) Influence of land-surface evapotranspiration on the Earth’s climate. Science 215:1498–1501

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill D, Barker D, Wang W, Powers JG (2005). A description of the Advanced Research WRF Version 2. NCAR Technical Note, NCAR/TN-468 + STR

  • Soares PMM, Cardoso RM, Miranda PMA, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522

    Article  Google Scholar 

  • Sui C, Li X, Yang M (2007) On the definition of precipitation efficiency. J Atmosph Sci 64:4506–4513. doi:10.1175/2007JAS2332.1

    Article  Google Scholar 

  • Trenberth KE (1999) Atmosphere moisture recycling: role of advective convection and local evaporation. J Climate 12:1368–1381

    Article  Google Scholar 

  • Uppala et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Van der Ent RJ, Savenije HHG (2011) Length and time scales of atmospheric moisture recycling. Atmos Chem Phys 11:1853–1863

    Article  Google Scholar 

  • Van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne SC (2010) Origin and fate of atmospheric moisture over continents. Water Resour Res 46:W09525. doi:10.1029/2010WR009127

    Google Scholar 

  • Weisman ML, Skamarock WC, Klemp JB (1997) The resolution dependence of explicitly modeled convective systems. Mon Weather Rev 125:527–548

    Article  Google Scholar 

  • Yu X, Lee TY (2010) Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus 62A:617–632

    Google Scholar 

Download references

Acknowledgments

This research is supported by grant CGL2006-13828 and through the FPU program of the Ministerio de Educación y Ciencia (Ministry of Education and Science) of Spain. We thank IPMA, AEMET and UC for the data (Spain02 dataset, http://www.meteo.unican.es/datasets/spain02; PT02 gridded precipitation dataset) and the Centro de Supercomputación de Galicia (Supercomputing Center of Galicia, CESGA) for their technical support. ERA-Interim and ERA-40 data used in this study were provided by ECMWF. We thank Dr. Francina Dominguez for her valuable advice. Finally, we thank the two anonymous reviewers for their comments and suggestions, which helped to improve the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Rios-Entenza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rios-Entenza, A., Miguez-Macho, G. Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula. Clim Dyn 42, 3207–3231 (2014). https://doi.org/10.1007/s00382-013-1971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1971-x

Keywords

Navigation