Climate Dynamics

, Volume 42, Issue 7–8, pp 2239–2257 | Cite as

Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface observations

  • Jonas Mortin
  • Rune G. Graversen
  • Gunilla Svensson
Article

Abstract

The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.

Keywords

Arctic melt-freeze transitions Climate model evaluation Arctic climate change CMIP5 future projections Reanalysis Arctic ocean 

References

  1. Abdalati W, Steffen K, Otto C, Jezek KC (1995) Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and FII satellites for Antarctica and the Greenland ice sheet. Int J Remote Sens 16:1223–1229. doi:10.1080/01431169508954473 CrossRefGoogle Scholar
  2. Abe M, Shiogama H, Nozawa T, Emori S (2011) Estimation of future surface temperature changes constrained using the future-present correlated modes in inter-model variability of CMIP3 multimodel simulations. J Geophys Res 116:D18104. doi:10.1029/2010JD015111 CrossRefGoogle Scholar
  3. Andreas E, Ackley S (1982) On the differences in ablation seasons of Arctic and Antarctic sea ice. J Atmospheric Sci 39:440–447CrossRefGoogle Scholar
  4. Barry RG, Armstrong R, Callaghan T et al (2007) Snow. In: UNEP/GRID (ed) Global outlook for ice and snow, chap 4. United Nations Environment Programme, Arendal, pp 39–62. Available at: http://www.unep.org/geo/geo_ice
  5. Bauer KG, Dutton JA (1962) Albedo variations measured from an airplane over several types of surface. J Geophys Res 67:2367–2376CrossRefGoogle Scholar
  6. Bentsen M, Bethke I, Debernard JB et al (2012) The Norwegian Earth System Model, NorESM1-M—Part 1: description and basic evaluation. Geosci Model Dev Discuss 5:2843–2931. doi:10.5194/gmdd-5-2843-2012 CrossRefGoogle Scholar
  7. Bitz C, Battisti D, Moritz R, Beesley J (1996) Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J Clim 9:394–408CrossRefGoogle Scholar
  8. Brönnimann S, Grant AN, Compo GP et al (2012) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598. doi:10.1007/s00382-012-1291-6 CrossRefGoogle Scholar
  9. Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Boulder, Colorado, USA. Available at: www.nsidc.org
  10. Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmospheric Chemistry and Physics Discussions 11: 22893–22907. Available at: http://www.atmos-chem-phys-discuss.net/11/22893/2011/. doi:10.5194/acpd-11-22893-2011
  11. Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011 CrossRefGoogle Scholar
  12. Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193. doi:10.1175/JCLI-D-11-00113.1 CrossRefGoogle Scholar
  13. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:1–6. doi:10.1029/2007GL031972 CrossRefGoogle Scholar
  14. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi:10.1175/BAMS-87-2-175 CrossRefGoogle Scholar
  15. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J Royal Meteorol Soc 137:1–28. doi:10.1002/qj.776 CrossRefGoogle Scholar
  16. Cook BI, Bonan GB, Levis S, Epstein HE (2007) The thermoinsulation effect of snow cover within a climate model. Clim Dyn 31:107–124. doi:10.1007/s00382-007-0341-y CrossRefGoogle Scholar
  17. Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Royal Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  18. Dufresne J-L, Foujols M-A, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-012-1636-1 Google Scholar
  19. Dunne JP, John JG, Adcroft AJ et al (2012) GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi:10.1175/JCLI-D-11-00560.1 CrossRefGoogle Scholar
  20. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051000 CrossRefGoogle Scholar
  21. Hezel PJ, Zhang X, Bitz CM, Kelly BP, Massonnet F (2012) Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys Res Lett 39:L17505. doi:10.1029/2012GL052794 CrossRefGoogle Scholar
  22. Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64:1–12. doi:10.3402/tellusa.v64i0.18624 CrossRefGoogle Scholar
  23. Inoue J, Hori ME, Takaya K (2012) The role of barents sea ice in the wintertime cyclone track and emergence of a Warm-Arctic Cold-Siberian Anomaly. J Clim 25:2561–2568. doi:10.1175/JCLI-D-11-00449.1 CrossRefGoogle Scholar
  24. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. United Kingdom and New York, NY, p 996Google Scholar
  25. Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64:1–11. doi:10.3402/tellusa.v64i0.11595 CrossRefGoogle Scholar
  26. Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi:10.1029/2012GL051591 Google Scholar
  27. Jezek K, Merry C, Cavalieri D et al. (1991) Comparison Between SMMR and SSM/I Passive Microwave Data Collected over the Antarctic Ice Sheet. BPRC Technical Report Number 91-03. Colombus, Ohio, USAGoogle Scholar
  28. Knutti R, Sedláček J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 1–5. doi:10.1038/nclimate1716
  29. Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res 113:1–17. doi:10.1029/2008JC004753 Google Scholar
  30. Kwok R, Untersteiner N (2011) The thinning of Arctic sea ice. Phys Today 64:36. doi:10.1063/1.3580491 CrossRefGoogle Scholar
  31. Kwok R, Panzer B, Leuschen C et al (2011) Airborne surveys of snow depth over Arctic sea ice. J Geophys Res 116:1–16. doi:10.1029/2011JC007371 Google Scholar
  32. Lawrence DM, Slater AG (2009) The contribution of snow condition trends to future ground climate. Clim Dyn 34:969–981. doi:10.1007/s00382-009-0537-4 CrossRefGoogle Scholar
  33. Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950. doi:10.1038/nature02050 CrossRefGoogle Scholar
  34. Ling F, Zhang T (2003) Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafr Periglac Process 14:141–150. doi:10.1002/ppp.445 CrossRefGoogle Scholar
  35. Liu J, Zhang Z, Hu Y, Chen L, Dai Y, Ren X (2008) Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations. J Geophys Res 113:D10105. doi:10.1029/2007JD009380 CrossRefGoogle Scholar
  36. Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci USA 109:4074–4079. doi:10.1073/pnas.1114910109 CrossRefGoogle Scholar
  37. Maksimovich E, Vihma T (2012) The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J Geophys Res 117:1–19. doi:10.1029/2011JC007220 Google Scholar
  38. Martin S, Munoz EA (1997) Properties of the Arctic 2-meter air temperature field for 1979 to the present derived from a new gridded dataset. J Clim 10:1428–1440. doi:10.1175/1520-0442(1997)010<1428:POTAMA>2.0.CO;2 CrossRefGoogle Scholar
  39. Mortin J, Schrøder TM, Walløe Hansen A, Holt B, McDonald KC (2012) Mapping of seasonal freeze-thaw transitions across the pan-Arctic land and sea ice domains with satellite radar. J Geophys Res 117:C08004. doi:10.1029/2012JC008001 Google Scholar
  40. Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  41. Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett 39:1–6. doi:10.1029/2012GL053268 CrossRefGoogle Scholar
  42. Perovich D, Elder B (2001) Temporal evolution of Arctic sea-ice temperature. Ann Glaciol 33:207–211CrossRefGoogle Scholar
  43. Perovich DK, Polashenski C (2012) Albedo evolution of seasonal Arctic sea ice. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051432 CrossRefGoogle Scholar
  44. Perovich DK, Nghiem SV, Markus T, Schweiger A (2007) Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. J Geophys Res 112:1–13. doi:10.1029/2006JC003558 Google Scholar
  45. Persson POG (2011) Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Clim Dyn 39:1349–1371. doi:10.1007/s00382-011-1196-9 CrossRefGoogle Scholar
  46. Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2 CrossRefGoogle Scholar
  47. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change. Nature Publishing Group 2:248–253. doi:10.1038/nclimate1385 CrossRefGoogle Scholar
  48. Serreze MC, Barry RG (2009) The Arctic Climate System. Cambridge University Press, Cambridge. United Kingdom and New York, NY, p 404Google Scholar
  49. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. Elsevier B.V. 77: 85–96. doi:10.1016/j.gloplacha.2011.03.004
  50. Serreze M, Barrett A, Stroeve J (2009) The emergence of surface-based Arctic amplification. The Cryosphere 3:11–19CrossRefGoogle Scholar
  51. Smith S, Muench R, Pease C (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95:9461–9479CrossRefGoogle Scholar
  52. Stevens B, Giorgetta M, Esch M et al (2013) The atmospheric component of the MPI-M earth system model: ECHAM6. Accep J Adv Model Earth Sys. doi:10.1002/jame.20015 Google Scholar
  53. Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res 107. doi:10.1029/2000JD000286
  54. Stroeve JC, Kattsov V, Barrett A et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:1–7. doi:10.1029/2012GL052676 CrossRefGoogle Scholar
  55. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  56. Thum T, Aalto T, Laurila T et al (2009) Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B 61:701–717. doi:10.1111/j.1600-0889.2009.00441.x CrossRefGoogle Scholar
  57. Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al. (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. Available at: http://www.springerlink.com/index/10.1007/s00382-011-1259-y. doi:10.1007/s00382-011-1259-y
  58. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmospheric Ocean Phys 46:414–431. doi:10.1134/S000143381004002X Google Scholar
  59. Wang M, Overland JE (2012) A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys Res Lett 39:6–11. doi:10.1029/2012GL052868 Google Scholar
  60. Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  61. Whitaker J, Compo G, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200CrossRefGoogle Scholar
  62. Yukimoto S, Yoshimura H, Hosaka M et al. (2011) Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1). Technical Reports of the Meteorological Institute 64Google Scholar
  63. Zhang L, Wu T, Xin X, Dong M, Wang Z (2012) Projections of annual mean air temperature and precipitation over the globe and in China during the 21st Century by the BCC Climate System Model BCC–CSM1.0. Acta Meteorolgica Sinica 26:362–375. doi:10.1007/s13351-012-0308-8.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonas Mortin
    • 1
  • Rune G. Graversen
    • 1
  • Gunilla Svensson
    • 1
  1. 1.Department of Meteorology and the Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden

Personalised recommendations