Skip to main content

Advertisement

Log in

Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface observations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The seasonal melt-freeze transitions are fundamental features of the Arctic climate system. The representation of the pan-Arctic melt and freeze onset (north of 60°N) is assessed in two reanalyses and eleven CMIP5 global circulation models (GCMs). The seasonal melt-freeze transitions are retrieved from surface air temperature (SAT) across the land and sea-ice domains and evaluated against surface observations. While monthly averages of SAT are reasonably well represented in models, large model-observation and model–model disparities of timing of melt and freeze onset are evident. The evaluation against surface observations reveals that the ERA-Interim reanalysis performs the best, closely followed by some of the climate models. GCMs and reanalyses capture the seasonal melt-freeze transitions better in the central Arctic than in the marginal seas and across the land areas. The GCMs project that during the 21st century, the summer length—the period between melt and freeze onset—will increase over land by about 1 month at all latitudes, and over sea ice by 1 and 3 months at low and high latitudes, respectively. This larger summer-length increase over sea ice at progressively higher latitudes is related to a retreat of summer sea ice during the 21st century, since open water freezes roughly 40 days later than ice-covered ocean. As a consequence, by the year 2100, the freeze onset is projected to be initiated within roughly 10 days across the whole Arctic Ocean, whereas this transition varies by about 80 days today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdalati W, Steffen K, Otto C, Jezek KC (1995) Comparison of brightness temperatures from SSMI instruments on the DMSP F8 and FII satellites for Antarctica and the Greenland ice sheet. Int J Remote Sens 16:1223–1229. doi:10.1080/01431169508954473

    Article  Google Scholar 

  • Abe M, Shiogama H, Nozawa T, Emori S (2011) Estimation of future surface temperature changes constrained using the future-present correlated modes in inter-model variability of CMIP3 multimodel simulations. J Geophys Res 116:D18104. doi:10.1029/2010JD015111

    Article  Google Scholar 

  • Andreas E, Ackley S (1982) On the differences in ablation seasons of Arctic and Antarctic sea ice. J Atmospheric Sci 39:440–447

    Article  Google Scholar 

  • Barry RG, Armstrong R, Callaghan T et al (2007) Snow. In: UNEP/GRID (ed) Global outlook for ice and snow, chap 4. United Nations Environment Programme, Arendal, pp 39–62. Available at: http://www.unep.org/geo/geo_ice

  • Bauer KG, Dutton JA (1962) Albedo variations measured from an airplane over several types of surface. J Geophys Res 67:2367–2376

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB et al (2012) The Norwegian Earth System Model, NorESM1-M—Part 1: description and basic evaluation. Geosci Model Dev Discuss 5:2843–2931. doi:10.5194/gmdd-5-2843-2012

    Article  Google Scholar 

  • Bitz C, Battisti D, Moritz R, Beesley J (1996) Low-frequency variability in the Arctic atmosphere, sea ice, and upper-ocean climate system. J Clim 9:394–408

    Article  Google Scholar 

  • Brönnimann S, Grant AN, Compo GP et al (2012) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598. doi:10.1007/s00382-012-1291-6

    Article  Google Scholar 

  • Cavalieri D, Parkinson C, Gloersen P, Zwally HJ (1996) Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Boulder, Colorado, USA. Available at: www.nsidc.org

  • Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmospheric Chemistry and Physics Discussions 11: 22893–22907. Available at: http://www.atmos-chem-phys-discuss.net/11/22893/2011/. doi:10.5194/acpd-11-22893-2011

  • Collins WJ, Bellouin N, Doutriaux-Boucher M et al (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193. doi:10.1175/JCLI-D-11-00113.1

    Article  Google Scholar 

  • Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:1–6. doi:10.1029/2007GL031972

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190. doi:10.1175/BAMS-87-2-175

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J Royal Meteorol Soc 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Cook BI, Bonan GB, Levis S, Epstein HE (2007) The thermoinsulation effect of snow cover within a climate model. Clim Dyn 31:107–124. doi:10.1007/s00382-007-0341-y

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Royal Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn. doi:10.1007/s00382-012-1636-1

    Google Scholar 

  • Dunne JP, John JG, Adcroft AJ et al (2012) GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics. J Clim 25:6646–6665. doi:10.1175/JCLI-D-11-00560.1

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051000

    Article  Google Scholar 

  • Hezel PJ, Zhang X, Bitz CM, Kelly BP, Massonnet F (2012) Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze-up this century. Geophys Res Lett 39:L17505. doi:10.1029/2012GL052794

    Article  Google Scholar 

  • Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64:1–12. doi:10.3402/tellusa.v64i0.18624

    Article  Google Scholar 

  • Inoue J, Hori ME, Takaya K (2012) The role of barents sea ice in the wintertime cyclone track and emergence of a Warm-Arctic Cold-Siberian Anomaly. J Clim 25:2561–2568. doi:10.1175/JCLI-D-11-00449.1

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. United Kingdom and New York, NY, p 996

    Google Scholar 

  • Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64:1–11. doi:10.3402/tellusa.v64i0.11595

    Article  Google Scholar 

  • Jakobson E, Vihma T, Palo T, Jakobson L, Keernik H, Jaagus J (2012) Validation of atmospheric reanalyses over the central Arctic Ocean. Geophys Res Lett 39:L10802. doi:10.1029/2012GL051591

    Google Scholar 

  • Jezek K, Merry C, Cavalieri D et al. (1991) Comparison Between SMMR and SSM/I Passive Microwave Data Collected over the Antarctic Ice Sheet. BPRC Technical Report Number 91-03. Colombus, Ohio, USA

  • Knutti R, Sedláček J (2012) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 1–5. doi:10.1038/nclimate1716

  • Kwok R, Cunningham GF (2008) ICESat over Arctic sea ice: estimation of snow depth and ice thickness. J Geophys Res 113:1–17. doi:10.1029/2008JC004753

    Google Scholar 

  • Kwok R, Untersteiner N (2011) The thinning of Arctic sea ice. Phys Today 64:36. doi:10.1063/1.3580491

    Article  Google Scholar 

  • Kwok R, Panzer B, Leuschen C et al (2011) Airborne surveys of snow depth over Arctic sea ice. J Geophys Res 116:1–16. doi:10.1029/2011JC007371

    Google Scholar 

  • Lawrence DM, Slater AG (2009) The contribution of snow condition trends to future ground climate. Clim Dyn 34:969–981. doi:10.1007/s00382-009-0537-4

    Article  Google Scholar 

  • Laxon S, Peacock N, Smith D (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950. doi:10.1038/nature02050

    Article  Google Scholar 

  • Ling F, Zhang T (2003) Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. Permafr Periglac Process 14:141–150. doi:10.1002/ppp.445

    Article  Google Scholar 

  • Liu J, Zhang Z, Hu Y, Chen L, Dai Y, Ren X (2008) Assessment of surface air temperature over the Arctic Ocean in reanalysis and IPCC AR4 model simulations with IABP/POLES observations. J Geophys Res 113:D10105. doi:10.1029/2007JD009380

    Article  Google Scholar 

  • Liu J, Curry JA, Wang H, Song M, Horton RM (2012) Impact of declining Arctic sea ice on winter snowfall. Proc Natl Acad Sci USA 109:4074–4079. doi:10.1073/pnas.1114910109

    Article  Google Scholar 

  • Maksimovich E, Vihma T (2012) The effect of surface heat fluxes on interannual variability in the spring onset of snow melt in the central Arctic Ocean. J Geophys Res 117:1–19. doi:10.1029/2011JC007220

    Google Scholar 

  • Martin S, Munoz EA (1997) Properties of the Arctic 2-meter air temperature field for 1979 to the present derived from a new gridded dataset. J Clim 10:1428–1440. doi:10.1175/1520-0442(1997)010<1428:POTAMA>2.0.CO;2

    Article  Google Scholar 

  • Mortin J, Schrøder TM, Walløe Hansen A, Holt B, McDonald KC (2012) Mapping of seasonal freeze-thaw transitions across the pan-Arctic land and sea ice domains with satellite radar. J Geophys Res 117:C08004. doi:10.1029/2012JC008001

    Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823

    Article  Google Scholar 

  • Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett 39:1–6. doi:10.1029/2012GL053268

    Article  Google Scholar 

  • Perovich D, Elder B (2001) Temporal evolution of Arctic sea-ice temperature. Ann Glaciol 33:207–211

    Article  Google Scholar 

  • Perovich DK, Polashenski C (2012) Albedo evolution of seasonal Arctic sea ice. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051432

    Article  Google Scholar 

  • Perovich DK, Nghiem SV, Markus T, Schweiger A (2007) Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system. J Geophys Res 112:1–13. doi:10.1029/2006JC003558

    Google Scholar 

  • Persson POG (2011) Onset and end of the summer melt season over sea ice: thermal structure and surface energy perspective from SHEBA. Clim Dyn 39:1349–1371. doi:10.1007/s00382-011-1196-9

    Article  Google Scholar 

  • Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic, 1979–97. J Clim 13:896–914. doi:10.1175/1520-0442(2000)013<0896:VISATO>2.0.CO;2

    Article  Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change. Nature Publishing Group 2:248–253. doi:10.1038/nclimate1385

    Article  Google Scholar 

  • Serreze MC, Barry RG (2009) The Arctic Climate System. Cambridge University Press, Cambridge. United Kingdom and New York, NY, p 404

    Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change. Elsevier B.V. 77: 85–96. doi:10.1016/j.gloplacha.2011.03.004

  • Serreze M, Barrett A, Stroeve J (2009) The emergence of surface-based Arctic amplification. The Cryosphere 3:11–19

    Article  Google Scholar 

  • Smith S, Muench R, Pease C (1990) Polynyas and leads: an overview of physical processes and environment. J Geophys Res 95:9461–9479

    Article  Google Scholar 

  • Stevens B, Giorgetta M, Esch M et al (2013) The atmospheric component of the MPI-M earth system model: ECHAM6. Accep J Adv Model Earth Sys. doi:10.1002/jame.20015

    Google Scholar 

  • Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res 107. doi:10.1029/2000JD000286

  • Stroeve JC, Kattsov V, Barrett A et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:1–7. doi:10.1029/2012GL052676

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thum T, Aalto T, Laurila T et al (2009) Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B 61:701–717. doi:10.1111/j.1600-0889.2009.00441.x

    Article  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D et al. (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. Available at: http://www.springerlink.com/index/10.1007/s00382-011-1259-y. doi:10.1007/s00382-011-1259-y

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmospheric Ocean Phys 46:414–431. doi:10.1134/S000143381004002X

    Google Scholar 

  • Wang M, Overland JE (2012) A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys Res Lett 39:6–11. doi:10.1029/2012GL052868

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi:10.1175/2010JCLI3679.1

    Article  Google Scholar 

  • Whitaker J, Compo G, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132:1190–1200

    Article  Google Scholar 

  • Yukimoto S, Yoshimura H, Hosaka M et al. (2011) Meteorological Research Institute-Earth System Model Version 1 (MRI-ESM1). Technical Reports of the Meteorological Institute 64

  • Zhang L, Wu T, Xin X, Dong M, Wang Z (2012) Projections of annual mean air temperature and precipitation over the globe and in China during the 21st Century by the BCC Climate System Model BCC–CSM1.0. Acta Meteorolgica Sinica 26:362–375. doi:10.1007/s13351-012-0308-8.1

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the International Arctic Buoy Programme, the National Aeronautics and Space Administration, National Snow and Ice Data Center, the European Centre for Medium-Range Forecasts, the Cooperative Institute for Research in Environmental Sciences, and all support provided for them, for producing and making available essential data. The authors are thankful to the two anonymous reviewers who helped to improve the clarity of the paper. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for their tremendous effort. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Mortin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortin, J., Graversen, R.G. & Svensson, G. Evaluation of pan-Arctic melt-freeze onset in CMIP5 climate models and reanalyses using surface observations. Clim Dyn 42, 2239–2257 (2014). https://doi.org/10.1007/s00382-013-1811-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1811-z

Keywords

Navigation