Skip to main content

Advertisement

Log in

How do weather characteristics change in a warming climate?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The possible change in the characteristics of weather in the future should be considered as important as the mean climate change because the increasing risk of extremes is related to the variability on daily time scales. The weather characteristics can be represented by the climatological mean interdiurnal (day-to-day) variability (MIDV). This paper first assessed the phase five of the Coupled Model Intercomparison Project coupled climate models’ capability to represent MIDV for the surface maximum and minimum temperature, surface wind speed and precipitation under the present climate condition. Based on the assessment, we selected three best models for projecting future change. We found that the future changes in MIDV are characterized by: (a) a marked reduction in surface maximum and minimum temperature over high latitudes during the cold season; (b) a stronger reduction in the surface minimum temperature than in the maximum temperature; (c) a reduction in surface wind speed over large parts of lands in Northern Hemisphere (NH) during NH spring; (d) a noticeable increase in precipitation in NH mid-high latitudes in NH spring and winter, and in particular over East Asia throughout most of the year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander LV, Arblaster JM (2009) Assessing trends in observed and modeled climate extremes over Australia in relation to future projections. Int J Climatol 29:417–435. doi:10.1002/joc.1730

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticussi M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111. doi:10.1029/2005JD006290

  • Bolvin DT, Adler RF, Huffman GJ, Nelkin EJ, Poutiainen JP (2009) Comparison of GPCP monthly and daily precipitation estimates with high-latitude gauge observations. J Appl Meteorol Climatol 48:1843–1857

    Article  Google Scholar 

  • Cao HX, Mitchell JFB, Lavery JR (1992) Simulated diurnal range and variability of surface temperature in a global climate model for present and doubled CO2 climates. J Clim 5:920–943

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Clarke LE, Edmonds JA, Jacoby HD, Pitcher H, Reilly JM, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1a of Synthesis and Assessment Product 2.1. Climate Change Science Program and the Subcommittee on Global Change Research, Washington DC

  • Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: 20th century simulations and 21st century predictions. J Clim 19:3681–3703

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J–J, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the rule of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Driscol DM, Rice PB, Fong JMY (1994) Spatial variation of climatic aspects of temperature: interdiurnal variability and lag. Int J Climatol 14:1001–1008. doi:10.1002/joc.3370140905

    Article  Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kenkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33:917–935

    Article  Google Scholar 

  • Frich PL, Alexander V, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climate extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gebremichael M, Krajewski WF, Morrissey ML, Huffman GJ, Adler RF (2005) A detailed evaluation of GPCP 1° daily rainfall estimates over the Mississippi River Basin. J Appl Meteorol 44:665–681

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi:10.1029/2007JD008972

    Article  Google Scholar 

  • Hagemann S, Jacob C (2007) Gradient in the climate change signal of European discharge predicted by a multi-model ensemble. Clim Change 81:309–327

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hibbard KA, Meehl GA, Cox P, Friedlingstein P (2007) A strategy for climate change stabilization experiments. EOS 88:217, 219, 221

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey MM, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J. Hydrometeorol 2:36–50

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Johns TC, Durman CF, Banks HT, Robert MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jons A, Richard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley center climate model (HadGEM1): evaluation of coupled simulations. J Clim 19:1327–1353

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woolen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kitoh A, Mukano T (2009) Changes in daily and monthly surface air temperature variability by multi-model global warming experiments. J Meteorol Soc Jpn 87:513–524

    Article  Google Scholar 

  • Klein Tank AMG, Können GP (2003) Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J Clim 16:3665–3680

    Article  Google Scholar 

  • Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106

    Article  Google Scholar 

  • Lee JY, Wang B (2013) Future change of global monsoon in the CMIP5. Clim Dyn 39:1123–1135. doi:10.1007/s00382-012-1564-0

    Google Scholar 

  • Lin X, Randall DA, Fowler LD (2000) Diurnal variability of the hydrologic cycle and radiative fluxes: comparisons between observations and a GCM. J Clim 13:4159–4179

    Article  Google Scholar 

  • Liu J, Wang B, Cane MA, Yim SY, Lee JY (2013) Divergent global precipitation changes induced by natural and anthropogenic forcing. Nature 493:656–659

    Article  Google Scholar 

  • Lobell DB, Bonfils C, Duffy PB (2007) Climate change uncertainty for daily minimum and maximum temperatures: a model inter-comparison. Geophys Res Lett 34:L05715. doi:10.1029/2006GL028726

    Article  Google Scholar 

  • Martin ER, Schumacher C (2012) The relationship between tropical warm pool precipitation, sea surface temperature, and large-scale vertical motion in IPCC AR4 models. J Atmos Sci 69:185–194

    Article  Google Scholar 

  • Meehl GA, Hibbard KA (2007) A strategy for climate change stabilization experiments with AOGCMs and ESMs. WCRP Informal Report No. 3/2007, ICPO Publication No. 112, IGBP Report No. 57. World Climate Research Programme, Geneva, p 35

  • Neelin JD, Munnich M, Su H, Meyerson JE, Holloway CE (2006) Tropical drying trends in global warming models and observations. Proc Natl Acad Sci USA 103:6110–6115

    Article  Google Scholar 

  • Pincus R, Batstone CP, Hofmann JP, Taylor KE, Glecker PJ (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res 113:D14209. doi:10.1029/2007JD009334

    Article  Google Scholar 

  • Prudhomme C, Reynard N, Crooks S (2002) Downscaling of global climate models for flood frequency analysis: where are we now? Hydrol Process 16:1137–1150

    Article  Google Scholar 

  • Rosenthal SL (1960) The interdiurnal variability of surface-air temperature over the north Atlantic ocean. J Meteorol 17:1–7

    Article  Google Scholar 

  • Santer BD, Mears C, Doutriaux C, Caldwell P, Gleckler PJ, Wigley TML, Solomon S, Gillett NP, Ivanova D, Karl TR, Lanzante JR, Meehl GA, Stott PA, Taylor KE, Thorne PW, Wehner MF, Wentz FJ (2011) Separating signal and noise in atmospheric temperature changes: the importance of timescale. J Geophys Res 116:D22105. doi:10.1029/2011JD016263

    Article  Google Scholar 

  • Scherrer SC (2011) Present-day interannual variability of surface climate in CMIP3 models and its relation to future warming. Int J Climatol 31:1518–1529. doi:10.1002/joc.2170

    Article  Google Scholar 

  • Scinocca J, McFarlane NA (2004) Variability of modelled tropical precipitation. J Atmos Sci 61(16):1993–2015

    Article  Google Scholar 

  • Smith SJ, Wigley TML (2006) MultiGas forcing stabilization with minicam. Energy J Special issue 3#:373–392

    Google Scholar 

  • Sushama L, Laprise R, Caya D, Frigon A, Slivitzky M (2006) Canadian RCM projected climate-change signal and its sensitivity to model errors. Int J Climatol 26:2141–2159

    Article  Google Scholar 

  • Szczypta C, Calvet J-C, Albergel C, Balsamo G, Boussetta S, Carrer D, Lafont S, Meurey C (2011) Verification of the new ECMWF ERA-Interim reanalysis over France. Hydrol Earth Syst Sci 15:647–666. doi:10.5194/hess-15-647-2011

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tost H, Jöckel P, Lelieveld J (2006) Influence of different convection parameterizations in a GCM. Atmos Chem Phys 6:5475–5493

    Article  Google Scholar 

  • Wang B, Rui H (1990) Synoptic climatology of transient tropical intraseasonal convection anomalies. Meteorol Atmos Phys 44(1–4):43–61

    Article  Google Scholar 

  • Wang B, Liu J, Kim HJ, Webster PJ, Yim SY (2012) Recent change of the global monsoon precipitation (1979–2008). Clim Dyn 39:1123–1135. doi:10.1007/s00382-011-1266-z

    Article  Google Scholar 

  • Williams KRS, Parker KC (1997) Trends in interdiurnal temperature variation for the central United States, 1945–1985. Prof Geogr 49:342–355. doi:10.1111/0033-0124.00082

    Article  Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  Google Scholar 

  • Yin X, Gruber A, Arkinc P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979–2001. J Hydrometeorol 5:1207–1222

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. B.W. acknowledges support provided by APEC Climate Center through Climate Prediction and its Application to Society (CliPAS) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ok-Yeon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, OY., Wang, B. & Shin, SH. How do weather characteristics change in a warming climate?. Clim Dyn 41, 3261–3281 (2013). https://doi.org/10.1007/s00382-013-1795-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1795-8

Keywords

Navigation