Skip to main content

Advertisement

Log in

Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In the study authors analyzed the interannual relationship between the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) and the tropical Indian Ocean (TIO) precipitation in boreal winter for the period 1979–2009. A significant simultaneous teleconnection between them is found. After removing the El Niño/Southern Oscillation and Indian Ocean dipole signals, the AO/NAO and the TIO precipitation (0°–10°S, 60°–80°E) yield a correlation of +0.56, which is also consistent with the AO/NAO-outgoing longwave radiation correlation of −0.61. The atmospheric and oceanic features in association with the AO/NAO-precipitation links are investigated. During positive AO/NAO winter, the Rossby wave guided by westerlies tends to trigger persistent positive geopotential heights in upper troposphere over about 20°–30°N and 55°–70°E, which is accompanied by a stronger Middle East jet stream. Meanwhile, there are anomalous downward air motions, strengthening the air pressure in mid-lower troposphere. The enhanced Arabian High brings anomalous northern winds over the northern Indian Ocean. As a result the anomalous crossing-equator air-flow enhances the intertropical convergence zone (ITCZ). On the other hand, the anomalous Ekman transport convergence by the wind stress curl over the central TIO deepens the thermocline. Both the enhanced ITCZ and the anomalous upper ocean heat content favor in situ precipitation in the central TIO. The AO/NAO-TIO precipitation co-variations in the IPCC AR4 historical climate simulation (1850–1999) of Bergen Climate Model version 2 were investigated. The Indian Ocean precipitation anomalies (particularly the convective precipitation along the ITCZ), in conjunction with the corresponding surface winds and 200 hPa anticyclonic atmospheric circulation and upper ocean heat contents were well reproduced in simulation. The similarity between the observation and simulation support the physical robustness of the AO/NAO-TIO precipitation links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Annamalai H, Liu P, Xie SP (2005) Southwest Indian Ocean SST variability: its local effect and remote influence on Asian monsoons. J Clim 18:4150–4167

    Article  Google Scholar 

  • Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J Clim 20:3164–3189

    Article  Google Scholar 

  • Branstator G (2002) Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1893–1910

    Article  Google Scholar 

  • Carton JA, Chepurin G, Cao X, Giese B (2000) A simple ocean data assimilation analysis of the global upper ocean 1950–95. Part I: methodology. J Phys Oceanogr 30:294–309

    Article  Google Scholar 

  • Cassou C (2008) Intraseasnal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature 455:523–527

    Article  Google Scholar 

  • Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Chen M, Wang W, Kumar A, Wang H, Jha B (2012) Ocean surface impacts on the seasonal-mean precipitation over the tropical Indian Ocean. J Clim 25:3566–3582

    Article  Google Scholar 

  • Chen H, Shneider EK, Kirtman BP, Colfescu I (2013) Evaluation of weather noise and its role in climate model simulations. J Clim. http://dx.doi.org/10.1175/JCLI-D-12-00292.1

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Du Y, Xie S-P, Huang G, Hu K-M (2009) Role of air-sea interaction in the long persistence of El Niño-induced North Indian Ocean warming. J Clim 22:2023–2038

    Article  Google Scholar 

  • Furevik T, Bentsen M, Drange H, Kindem I, Kvamstø NG, Sorteberg A (2003) Description and validation of the Bergen climate model: ARPEGE coupled with MICOM. Clim Dyn 21:27–51

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gong D-Y, Yang J, Kim S-J, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216. doi:10.1007/s00382-011-1041-1

    Article  Google Scholar 

  • Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi:10.1029/2005GL024803

    Google Scholar 

  • Guan ZY, Ashok K, Yamagata T (2003) Summertime response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. J Meteorol Soc Japan 81(3):533–561

    Article  Google Scholar 

  • Hsu H–H, Lin S-H (1992) Global teleconnections in the 250-mb stream function field during the Northern Hemisphere winter. Mon Wea Rev 120:1169–1190

    Article  Google Scholar 

  • Hsu H–H, Hoskins BJ, Jin FF (1990) The 1985/1986 intraseasonal oscillation and the role of the extratropics. J Atmos Sci 47:823–839

    Article  Google Scholar 

  • Huang B, Kinter III JL (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res 107(C11):3199. doi:10.1029/2001JC001278

    Google Scholar 

  • Huang B, Shukla J (2007) Mechanisms for the interannual variability in the tropical Indian Ocean. Part I: the role of remote forcing from the tropical Pacific. J Clim 20(13):2917–2936

    Article  Google Scholar 

  • Huang G, Hu K, Xie S-P (2010) Strengthening of tropical Indian Ocean teleconnection to the Northwest Pacific since the mid-1970s: an atmospheric GCM study. J Clim 23:5294–5304

    Article  Google Scholar 

  • Izumo T, Montégut CB, Luo J–J, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi:10.1126/science.284.5423.2156

    Article  Google Scholar 

  • Li S, Lu J, Huang G, Hu K (2008a) Tropical Indian Ocean basin warming and East Asian summer monsoon: a multiple AGCM study. J Clim 21:6080–6088

    Article  Google Scholar 

  • Li J, Yu RC, Zhou TJ (2008b) Teleconnection between NAO and climate downstream of the Tibetan Plateau. J Clim 21:4680–4690

    Article  Google Scholar 

  • Li SL, Perlwitz J, Hoerling MP, Chen XT (2010) Opposite annular responses of Northern and Southern Hemisphere to Indian Ocean warming. J Clim 23(13):3720–3738

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (Interpolated) outgoing longwave radiation dataset. Bull Am Meteor Soc 77:1275–1277

    Google Scholar 

  • Lin H, Brunet G (2011) Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian Oscillation. Geophys Res Lett 38:L02802. doi:10.1029/2010GL046131

    Google Scholar 

  • Lin H, Brunet G, Derome J (2009) An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. J Clim 22:364–380

    Article  Google Scholar 

  • Lin H, Brunet G, Fontecilla JS (2010) Impact of the Madden-Julian Oscillation on the intraseasonal forecast skill of the North Atlantic Oscillation. Geophys Res Lett 37:L19803. doi:10.1029/2010GL044315

    Google Scholar 

  • Linderholm HW, Ou T, Jeong J-H, Folland CK, Gong DY, Liu H, Liu Y, Chen D (2011) Interannual teleconnections between the summer North Atlantic Oscillation and the East Asian summer monsoon. J Geophys Res 116:D13107. doi:10.1029/2010JD015235

    Article  Google Scholar 

  • Lu RY, Dong BW, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett 33:24. doi:10.1029/2006GL027655

    Google Scholar 

  • Luo FS, Li S, Furevik T (2011) The connection between the Atlantic Multidecadal Oscillation and the Indian summer monsoon in Bergen Climate Model version 2.0. J Geophys Res 116:D19117. doi:10.1029/2011JD015848

    Article  Google Scholar 

  • Mao R, Gong D-Y, Yang J, Bao JD (2011) Linkage between the Arctic Oscillation and winter extreme precipitation over central-southern China. Clim Res 50(187–201):c1041. doi:10.3354/cr01041

    Google Scholar 

  • Miller AJ, Zhou S, Yang S-K (2003) Relationship of the Arctic and Antarctic Oscillations to the outgoing longwave radiation. J Clim 16:1583–1592

    Article  Google Scholar 

  • Otterå OH, Bentsen M, Bethke I, Kvamstø NG (2009) Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features. Geosci Model Dev 2:197–212

    Article  Google Scholar 

  • Pan LL, Li T (2008) Interactions between the tropical ISO and midlatitude low-frequency flow. Clim Dyn 31:375–388

    Article  Google Scholar 

  • Qu X, Huang G (2011) Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer. Int J Climatol. doi:10.1002/joc.2378

    Google Scholar 

  • Ramage CS (1952) Relationship of general circulation to normal weather over southern Asia and the western Pacific during the cool season. J Meteorol 9:403–408

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Structure of SST and surface wind variability during Indian Ocean dipole mode events: COADS observations. J Clim 16:2735–2751

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Schneider EK, Fan M (2007) Weather noise forcing of surface climate variability. J Atmos Sci 64:3265–3280

    Article  Google Scholar 

  • Schott FA, Xie S-P, McCreary P Jr (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2293

    Article  Google Scholar 

  • Sung M-K, Lim G-H, Kug J-S (2010) Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. J Geophys Res 115:D09105. doi:10.1029/2009JD013153

    Google Scholar 

  • Syed FS, Yoo JH, Kornich H, Kucharski F (2012) Extratropical influences on the inter-annual variability of South-Asia monsoon. Clim Dyn 38:1661–1674

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58:608–627

    Article  Google Scholar 

  • Taschetto AS, Ambrizzi T (2012) Can Indian Ocean SST anomalies influence South American rainfall? Clim Dyn 38:1615–1628. doi:10.1007/s00382-011-1165-3

    Article  Google Scholar 

  • Taschetto AS, Gupta AS, Hendon HH, Ummenhofer CC, England MH (2011) The contribution of Indian Ocean sea surface temperature anomalies on Australian summer rainfall during El Niño events. J Clim 24(14):3734–3747

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Vialard J, Terray P, Duvel JP, Nanjundiah RS, Shenoi SSC, Shankar D (2011) Factors controlling January-April rainfall over southern India and Sri Lanka. Clim Dyn 37:493–507. doi:10.1007/s00382-010-0970-4

    Article  Google Scholar 

  • Wang B, Ding Q, Fu X, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophy Res Lett 32:L15711. doi:10.1029/2005GL022734

    Article  Google Scholar 

  • Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17:4674–4691

    Article  Google Scholar 

  • Watanabe M, Jin F (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29(10):1478. doi:10.1029/2001GL014318

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled oceanic-atmospheric dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Wea Rev 132:1917–1932

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, New York

    Google Scholar 

  • Wu RG, Kirtman BP, Pegion K (2006) Local air-sea relationship in observations and model simulations. J Climate 19:4914–4932

    Article  Google Scholar 

  • Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophy Res 113:D05104. doi:10.1029/2007JD009316

    Google Scholar 

  • Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558

    Article  Google Scholar 

  • Xie S-P, Annamalai H, Schott FA, McCreary JP Jr (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15:864–878

    Article  Google Scholar 

  • Xie S-P, Hu K, Halfer J, Du Y, Huang G, Tokinaga H (2009) Indian Ocean capacitor effect on Indi-western Pacific climate during the summer following El Niño. J Clim 22:730–747

    Article  Google Scholar 

  • Yang S, Lau K-M, Yoo S-H, Kinter JL, Miyakoda K, Ho CH (2004) Upstream subtropical signals preceding the Asian summer monsoon circulation. J Clim 17:4213–4229

    Article  Google Scholar 

  • Yang J, Liu Q, Liu Z, Wu L, Huang F (2009) Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys Res Lett 36:L19705. doi:10.1029/2009GL039559

    Article  Google Scholar 

  • Yang J, Gong D-Y, Wang W-S, Hu M, Mao R (2012) Extreme drought event of 2009/2010 over southwestern China. Meteor Atmos Phys 115:173–184. doi:10.1007/s00703-011-0172-6

    Article  Google Scholar 

  • Yuan Y, Zhou W, Chan JCL, Li CY (2008) Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. Int J Climatol 28:1579–1587. doi:10.1002/JOC.1671

    Article  Google Scholar 

  • Yuan J, Feldstein SB, Lee S, Tan B (2011) The relationship between the North Atlantic jet and tropical convection over the Indian and western Pacific Oceans. J Clim 24:6100–6113

    Article  Google Scholar 

  • Zhou S, Miller AJ (2005) The interaction of the Madden-Julian Oscillation and the Arctic Oscillation. J Clim 18:143–159

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by project 2012CB955401 and by Research Council of Norway (NFR) through the BlueArc (Impact of Blue Arctic on climate at high latitudes) and India-Clim (Decadal to multi-decadal variability in the Indian monsoon rainfall and teleconnection with Atlantic Multidecadal Oscillation). Mao was also supported by KOPRI project PE12010. Gong was supported by National Natural Science Foundation of China. ERA-Interim reanalysis data used in this study were obtained from ECMWF at http://www.ecmwf.int/. CMAP precipitation, ERSST and interpolated OLR data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Yi Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, DY., Gao, Y., Guo, D. et al. Interannual linkage between Arctic/North Atlantic Oscillation and tropical Indian Ocean precipitation during boreal winter. Clim Dyn 42, 1007–1027 (2014). https://doi.org/10.1007/s00382-013-1681-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1681-4

Keywords

Navigation