Skip to main content

Advertisement

Log in

A mechanism for Atlantic multidecadal variability in the Kiel Climate Model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bacon S, Gould WJ, Jia Y (2003) Open-ocean convection in the Irminger Sea. Geophys Res Lett 30(C5):1246

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air–sea interaction. Adv Geophys 10:1–82

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232

    Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317(5840):935–938. doi:10.1126/science.1141304

    Google Scholar 

  • Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North-Atlantic Ocean during winter—1900–1989. J Clim 6:1743–1753

    Article  Google Scholar 

  • Dickson R, Lazier J, Meincke J, Rhines P, Swift J (1996) Longterm coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295

    Article  Google Scholar 

  • Dijkstra HA, Raa LT, Schmeits M, Gerrits J (2006) On the physics of the Atlantic Multidecadal Oscillation. Ocean Dyn 56:36–50

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere gcm. J Clim 18:1117–1135

    Google Scholar 

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320:602–607

    Article  Google Scholar 

  • Frankcombe LM, Dijkstra HA, von der Heydt A (2009) Noise-induced multidecadal variability in the North Atlantic: excitation of normal modes. J Phys Oceanogr 39(1):220–233

    Article  Google Scholar 

  • Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293:474–479

    Article  Google Scholar 

  • Goodkin NF, Hughen KA, Doney SC, Curry WB (2008) Increased multidecadal variability of the North Atlantic Oscillation since 1781. Nat Geosci 1:844–848

    Article  Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys Res Lett 31:L12205. doi:10.1029/2004GL019932

  • Griffies SM and Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8:2440−2453

    Google Scholar 

  • Hatun H, Sando AB, Drange H, Hansen B, Valdimarsson H (2005) Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science 309:1841–1844

    Article  Google Scholar 

  • Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic. Science 317(5840):938–941

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986

    Article  Google Scholar 

  • Kilbourne KH, Quinn TM, Webb R, Guilderson T, Nyberg J, Winter A (2008) Paleoclimate proxy perspective on Caribbean climate since the year 1751: evidence of cooler temperatures and multidecadal variability. Paleoceanography 23, PA3220. doi:10.1029/2008PA001598

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal Variations in North Atlantic sea surface temperature and associated atmospheric conditions. J Clim 7:141–157

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res 10:1016

    Google Scholar 

  • Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside NS, Schweckendiek U, Madec G (2006a) Is the thermohaline circulation changing? J Clim 19:4631–4637

    Article  Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006b) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note Pole Model 27:1288–1619

    Google Scholar 

  • Mann ME, Emanuel KA (2006) Atlantic hurricane trends linked to climate change. Eos Trans AGU 87:233

    Article  Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    Article  Google Scholar 

  • Marotzke J (1997) Boundary mixing and the dynamics of three-dimensional thermohaline circulations. J Phys Oceanogr 27:1713–1728

    Article  Google Scholar 

  • Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37:1–64

    Article  Google Scholar 

  • Ottera OH, Bentsen M, Drange H, Suo LL (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694

    Article  Google Scholar 

  • Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703

    Article  Google Scholar 

  • Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37:L24702

    Google Scholar 

  • Park W, Latif M (2011) Atlantic meridional overturning circulation response to idealized external forcing. Clim Dyn 39:1709–1726. doi:10.1007/s00382-011-1212-0

    Google Scholar 

  • Park W et al (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92

    Article  Google Scholar 

  • Pickart RS, Torres DJ, Clarke RA (2002) Hydrography of the Labrador Sea during active convection. J Phys Oceanogr 32:428–457

    Article  Google Scholar 

  • Pickart RS, Straneo F, Moore GWK (2003) Is Labrador Sea Water formed in the Irminger Basin? Deep Sea Res Part I 50:23–52

    Article  Google Scholar 

  • Reverdin G, Durand F, Mortensen J, Schott F, Valdimarsson H, Zenk W (2002) Recent changes in the surface salinity of the North Atlantic subpolar gyre. J Geophys Res 107:8010

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model desc-ription. Max Planck Institute for Meteorology Rep. 349, 127 pp. (Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany)

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23):L23710

    Article  Google Scholar 

  • Semenov VA, Latif M, Dommenget D, Keenlyside NS, Strehz A, Martin T, Park W (2010) The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. J Clim 23:5668–5677

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Groetzner A (1998) Northern Hemisphere interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Article  Google Scholar 

  • Ting MF, Kushnir Y, Seager R, Li CH (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22:1469–1481

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide. PRISM technical report. CERFACS, Toulouse

    Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712

    Article  Google Scholar 

  • Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Greatbatch for fruitful discussions and Jennifer Mecking for help with matlab plotting. J.B. and N.K. were supported by the Deutsche Forschungsgemeinshaft under the Emmy Noether programme (Grant KE 1471/2-1). The research leading to these results has received funding from the European Community's 7th framework programme THOR (grant agreement No. GA212643), SUMO (ERC Grant # 266722), and STEPS (PCIG10-GA-2011-304243) projects. The Centre for Climate Dynamics is acknowledged. The model integrations were performed at the Computing Centre of Kiel University and at DKRZ Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ba, J., Keenlyside, N.S., Park, W. et al. A mechanism for Atlantic multidecadal variability in the Kiel Climate Model. Clim Dyn 41, 2133–2144 (2013). https://doi.org/10.1007/s00382-012-1633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1633-4

Keywords

Navigation