Skip to main content

Advertisement

Log in

Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Climate models show a broad diversity in the simulations of the Atlantic meridional overturning circulation (AMOC) with its leading modes of variability having different amplitudes, periods and driving mechanisms. Theoretical considerations and computations using ocean GCMs suggest that on interdecadal timescales this variability can be controlled by an internal weakly-damped oceanic mode associated with westward propagation of large-scale density anomalies in the North Atlantic Ocean. These anomalies are dominated by temperature with some compensation from salinity. The quadrature phases of this mode include the strengthening of the AMOC, followed a quarter-period later by the development of a broad warm temperature anomaly in the northern Atlantic extending to about 1000 m, then followed by the weakening of the AMOC, and then the upper-ocean cooling. Here, we investigate whether this mode is present in the simulations of Coupled Model Intercomparison Project 5 (CMIP5). Out of the 25 models investigated, we find that more than half of the models exhibit variability consistent with this mode. Some of the relevant modal features includes statistically significant spectral peaks in the band between 15 and 35 years, the westward propagation of density anomalies in the \(40^{\circ }\)N–\(60^{\circ }\)N latitudinal band, which sets the period of the mode, the existence of the distinct quadrature phases of the AMOC variability, and the predominant effect of temperature on density anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Álvarez Garca F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal north atlantic variability. J Clim 21(14):3433–3452

    Article  Google Scholar 

  • Barreiro M, Fedorov A, Pacanowski R, Philander SG (2008) Abrupt climate changes: how freshening of the northern atlantic affects the thermohaline and wind-driven oceanic circulations. Annu Rev Earth Planet Sci 36(1):33–58

    Article  Google Scholar 

  • Ben Jelloul M, Huck T (2003) Basin-mode interactions and selection by the mean flow in a reduced-gravity quasigeostrophic model. J Phys Oceanogr 33(11):2320–2332

    Article  Google Scholar 

  • Ben Jelloul M, Huck T (2005) Low-frequency basin modes in a two-layer quasigeostrophic model in the presence of a mean gyre flow*. J Phys Oceanogr 35(11):2167–2186

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard J, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad I, Hoose C et al (2012) The norwegian earth system model, NorESM1-M-part 1: description and basic evaluation. Geosci Model Dev Discuss 5:2843–2931

    Article  Google Scholar 

  • Buckley MW, Ferreira D, Campin JM, Marshall J, Tulloch R (2012) On the relationship between decadal buoyancy anomalies and variability of the atlantic meridional overturning circulation. J Clim 25(23):8009–8030

    Article  Google Scholar 

  • Cessi P (2000) Thermal feedback on wind stress as a contributing cause of climate variability. J Clim 13(1):232–244

    Article  Google Scholar 

  • Cessi P, Paparella F (2001) Excitation of basin modes by ocean-atmosphere coupling. Geophys Res Lett 28(12):2437–2440

    Article  Google Scholar 

  • Cessi P, Primeau F (2001) Dissipative selection of low-frequency modes in a reduced-gravity basin. J Phys Oceanogr 31(1):127–137

    Article  Google Scholar 

  • Chylek P, Folland C, Frankcombe L, Dijkstra H, Lesins G, Dubey M (2012) Greenland ice core evidence for spatial and temporal variability of the atlantic multidecadal oscillation. Geophys Res Lett 39(9):L09,705

    Article  Google Scholar 

  • Colin de Verdière A, Huck T (1999) Baroclinic instability: an oceanic wavemaker for interdecadal variability. J Phys Oceanogr 29(5):893–910

    Article  Google Scholar 

  • Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa OH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the north atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the atlantic meridional overturning circulation at 26.5 \(^{\circ }\)N. Science 317(5840):935–938

    Article  Google Scholar 

  • Danabasoglu G (2008) On multidecadal variability of the atlantic meridional overturning circulation in the community climate system model version 3. J Clim 21(21):5524–5544

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Kwon YO, Tribbia JJ, Phillips AS, Hurrell JW (2012) Variability of the atlantic meridional overturning circulation in ccsm4. J Clim 25(15):5153–5172

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Kim WM, Behrens E, Bentsen M, Bi D, Biastoch A, Bleck R, Bning C, Bozec A, Canuto VM, Cassou C, Chassignet E, Coward AC, Danilov S, Diansky N, Drange H, Farneti R, Fernandez E, Fogli PG, Forget G, Fujii Y, Griffies SM, Gusev A, Heimbach P, Howard A, Ilicak M, Jung T, Karspeck AR, Kelley M, Large WG, Leboissetier A, Lu J, Madec G, Marsland SJ, Masina S, Navarra A, Nurser AG, Pirani A, Romanou A, y Mlia DS, Samuels BL, Scheinert M, Sidorenko D, Sun S, Treguier AM, Tsujino H, Uotila P, Valcke S, Voldoire A, Wang Q, Yashayaev I (2016) North atlantic simulations in coordinated ocean-ice reference experiments phase II (core-ii). part ii: inter-annual to decadal variability. Ocean Model 97:65–90

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the northern hemisphere. Clim Dyn 16(9):661–676

    Article  Google Scholar 

  • Delworth TL, Zeng F (2012) Multicentennial variability of the atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2.1 climate model. Geophys Res Lett 39(13):L13,702

    Article  Google Scholar 

  • Delworth TL, Zeng F (2016) The impact of the north atlantic oscillation on climate through its influence on the atlantic meridional overturning circulation. J Clim 29(3):941–962

    Article  Google Scholar 

  • Dijkstra HA, Te Raa L, Schmeits M, Gerrits J (2006) On the physics of the atlantic multidecadal oscillation. Ocean Dyn 56(1):36–50

    Article  Google Scholar 

  • Escudier R, Mignot J, Swingedouw D (2013) A 20-year coupled ocean-sea ice-atmosphere variability mode in the north atlantic in an aogcm. Clim Dyn 40(3–4):619–636

    Article  Google Scholar 

  • Frankcombe L, Dijkstra H, Von der Heydt A (2008) Sub-surface signatures of the atlantic multidecadal oscillation. Geophys Res Lett 35(19):L19,602

    Article  Google Scholar 

  • Frankcombe L, Dijkstra H (2009) Coherent multidecadal variability in north atlantic sea level. Geophys Res Lett 36(15):L15,604

    Article  Google Scholar 

  • Frankcombe LM, Dijkstra HA (2010) Internal modes of multidecadal variability in the arctic ocean. J Phys Oceanogr 40(11):2496–2510

    Article  Google Scholar 

  • Huck T, Colin de Verdière A, Weaver AJ (1999) Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J Phys Oceanogr 29(5):865–892

    Article  Google Scholar 

  • Jamet Q, Huck T, Arzel O, Campin JM, Verdière AC (2016) Oceanic control of multidecadal variability in an idealized coupled GCM. Clim Dyn 46(9):3079–3095

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the north atlantic sector. Nature 453(7191):84–88

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20,708

    Article  Google Scholar 

  • Kushnir Y (1994) Interdecadal variations in north atlantic sea surface temperature and associated atmospheric conditions. J Clim 7(1):141–157

    Article  Google Scholar 

  • Kwon YO, Frankignoul C (2012) Stochastically-driven multidecadal variability of the atlantic meridional overturning circulation in ccsm3. Clim Dyn 38(5–6):859–876

    Article  Google Scholar 

  • LaCasce J (2000) Baroclinic rossby waves in a square basin*. J Phys Oceanogr 30(12):3161–3178

    Article  Google Scholar 

  • Latif M, Böning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing? J Clim 19(18):4631–4637

    Article  Google Scholar 

  • MacMartin DG, Tziperman E, Zanna L (2013) Frequency domain multimodel analysis of the response of atlantic meridional overturning circulation to surface forcing. J Clim 26(21):8323–8340

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 ocean general circulation model reference manual. Technical report, vol 11. France

  • Madec G, Imbard M (1996) A global ocean mesh to overcome the north pole singularity. Clim Dyn 12(6):381–388

    Article  Google Scholar 

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCARTNEY M, Saravanan R, Visbeck M et al (2001) North atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898

    Article  Google Scholar 

  • McCarthy G, Frajka-Williams E, Johns WE, Baringer MO, Meinen CS, Bryden HL, Rayner D, Duchez A, Roberts C, Cunningham SA (2012) Observed interannual variability of the atlantic meridional overturning circulation at \(26.5^{\circ }\)N. Geophys Res Lett 39(19):L19,609

    Article  Google Scholar 

  • McManus J, Francois R, Gherardi JM, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Clim Dyn 4(3):145–156

    Article  Google Scholar 

  • Muir L, Fedorov A (2015) How the AMOC affects ocean temperatures on decadal to centennial timescales: the north atlantic versus an interhemispheric seesaw. Clim Dyn 45(1–2):151–160

    Article  Google Scholar 

  • Ortega P, Mignot J, Swingedouw D, Sévellec F, Guilyardi E (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the north atlantic. Prog Oceanogr 137(Part A):237–249

    Article  Google Scholar 

  • Primeau F (2002) Long rossby wave basin-crossing time and the resonance of low-frequency basin modes. J Phys Oceanogr 32(9):2652–2665

    Article  Google Scholar 

  • Roberts CD, Garry FK, Jackson LC (2013) A multimodel study of sea surface temperature and subsurface density fingerprints of the atlantic meridional overturning circulation. J Clim 26(22):9155–9174

    Article  Google Scholar 

  • Ruddick B (1983) A practical indicator of the stability of the water column to double-diffusive activity. Deep Sea Res Part A Oceanogr Res Pap 30(10):1105–1107

    Article  Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–726

    Article  Google Scholar 

  • Sévellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of the atlantic meridional overturning circulation in a realistic ocean model. J Clim 26(7):2160–2183

    Article  Google Scholar 

  • Sévellec F, Fedorov AV (2015) Optimal excitation of amoc decadal variability: links to the subpolar ocean. Prog Oceanogr 132:287–304

    Article  Google Scholar 

  • Sévellec F, Fedorov AV (2016) AMOC sensitivity to surface buoyancy fluxes: stronger ocean meridional heat transport with a weaker volume transport? Clim Dyn. doi:10.1007/s00382-015-2915-4

  • Sévellec F, Huck T, Ben Jelloul M, Grima N, Vialard J, Weaver A (2008) Optimal surface salinity perturbations of the meridional overturning and heat transport in a global ocean general circulation model. J Phys Oceanogr 38(12):2739–2754

    Article  Google Scholar 

  • Sévellec F, Huck T, Ben Jelloul M, Vialard J (2009) Nonnormal multidecadal response of the thermohaline circulation induced by optimal surface salinity perturbations. J Phys Oceanogr 39(4):852–872

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Article  Google Scholar 

  • Te Raa LA, Dijkstra HA (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32(1):138–160

    Article  Google Scholar 

  • te Raa LA, Dijkstra HA (2003) Modes of internal thermohaline variability in a single-hemispheric ocean basin. J Mar Res 61(4):491–516

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14(8):1697–1701

    Article  Google Scholar 

  • Tulloch R, Marshall J (2012) Exploring mechanisms of variability and predictability of atlantic meridional overturning circulation in two coupled climate models. J Clim 25(12):4067–4080

    Article  Google Scholar 

  • Tziperman E, Ioannou PJ (2002) Transient growth and optimal excitation of thermohaline variability. J Phys Oceanogr 32(12):3427–3435

    Article  Google Scholar 

  • Weaver AT, Vialard J, Anderson DLT (2003) Three- and four-dimensional variational assimilation with a general circulation model of the tropical pacific ocean. part i: formulation, internal diagnostics, and consistency checks. Mon Weather Rev 131(7):1360–1378

    Article  Google Scholar 

  • Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73

    Article  Google Scholar 

  • Yoshimori M, Raible C, Stocker T, Renold M (2010) Simulated decadal oscillations of the atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34(1):101–121

    Article  Google Scholar 

  • Zanna L, Heimbach P, Moore AM, Tziperman E (2011) Optimal excitation of interannual atlantic meridional overturning circulation variability. J Clim 24(2):413–427

    Article  Google Scholar 

  • Zanna L, Tziperman E (2005) Nonnormal amplification of the thermohaline circulation. J Phys Oceanogr 35(9):1593–1605

    Article  Google Scholar 

  • Zhang R, Delworth TL, Held IM (2007) Can the atlantic ocean drive the observed multidecadal variability in northern hemisphere mean temperature? Geophys Res Lett 34(2):L02,709

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from DOE Office of Science (DE-SC0007037) and NSF (AGS-1405272). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Support from the Yale University Faculty of Arts and Sciences High Performance Computing facility is also acknowledged. We would also like to acknowledge and thank Florian Sévellec for several useful discussions of this problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les C. Muir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muir, L.C., Fedorov, A.V. Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Clim Dyn 48, 1517–1535 (2017). https://doi.org/10.1007/s00382-016-3157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3157-9

Keywords

Navigation