Skip to main content

Advertisement

Log in

Initialisation and predictability of the AMOC over the last 50 years in a climate model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

An Erratum to this article was published on 18 December 2013

Abstract

The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Álvarez-Garcia F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal North Atlantic variability. J Clim 21:3433–3452. doi:10.1175/2007JCLI1800.1

    Article  Google Scholar 

  • Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20(2):GB2017. doi:10.1029/2005GB002591

    Google Scholar 

  • Belkin IM (2004) Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic. Geophys Res Lett 31:L08306, 4 pp. doi:10.1029/2003GL019334

  • Belkin IM, Levitus S, Antonov J, Malmberg S-A (1998) Great salinity anomalies in the North Atlantic. Prog Oceanogr 41:1–68

    Article  Google Scholar 

  • Boer GJ (2004) Long-timescale potential predictability in an ensemble of coupled climate models. Clim Dyn 23:29–44

    Google Scholar 

  • Booth PW, Matthews SW, Sisson RE (1963) Bali’s sacred mountain blows its top. Natl Geogr 124(10):436

    Google Scholar 

  • Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560

    Article  Google Scholar 

  • Chylek P, Folland CK, Dijkstra KA, Lesins G, Dubey MK (2011) Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys Res Lett 38:L13704, 5 pp. doi:10.1029/2011GL047501

  • Collins M et al (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19:1195–1203

    Article  Google Scholar 

  • Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 17:935–938

    Article  Google Scholar 

  • Czaja A, Marshall J (2001) Observations of atmosphere–ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic Ocean during winter: 1900–1989. J Clim 6:1743–1753

    Article  Google Scholar 

  • Dijkstra HA, Ghil M (2005) Low-frequency variability of the ocean circulation: a dynamical systems approach. Rev Geophys 43:RG3002. doi:10.1029/2002RG000122

    Google Scholar 

  • Dunstone NJ, Smith DM (2010) Impact of atmosphere and sub-surface ocean data on decadal climate prediction. Geophys Res Lett 37:L02709. doi:10.1029/2009GL041609

    Google Scholar 

  • Dufresne J-L, Foujols M-A, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li Z. X., Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn (submitted)

  • Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic oscillation (1865–1997). J Clim 14:676–691

    Article  Google Scholar 

  • Escudier R, Mignot J, Swingedouw D A 20-year coupled ocean–sea ice–atmosphere variability mode in the North Atlantic in an AOGCM. Clim Dyn (submitted)

  • Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612

    Google Scholar 

  • Frankcombe L, von der Heydt A, Dijsktra HA (2010) North atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638

    Article  Google Scholar 

  • Frankignoul C, Kestenare E (2002) The surface heat flux feedback. Part 1: estimates from observations in the Atlantic and the North Pacific. Clim Dyn 19:633–647

    Article  Google Scholar 

  • Haak H, Jungclaus J, Mikolajewicz U, Latif M (2003) Formation and propagation of great salinity anomalies. Geophys Res Lett 30(9):1473. doi:10.1029/2003GL017065

    Article  Google Scholar 

  • Häkkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 12:1781–1795

    Article  Google Scholar 

  • Haney RH (1971) Surface thermal boundary conditions for ocean circulation models. J Phys Oceanogr 1:241–248

    Article  Google Scholar 

  • Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrised physics with emphasis on tropical convection. Clim Dyn 27:787–813

    Article  Google Scholar 

  • Huck T, Colin de Verdière A, Estrade P, Schopp R (2008) Low-frequency variations of the large-scale ocean circulation and heat transport in the North Atlantic from 1955–1998 in situ temperature and salinity data. Geophys Res Lett 35:L23613. doi:10.1029/2008GL035635

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipation. Science 269:676–679

    Article  Google Scholar 

  • Iwi AM, Hermanson L, Haines K, Sutton RT (2012) Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J Clim 25:3039–3051

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Johns WE, Hirschi JJ-M, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5°N. J Clim 23:5678–5698. doi:10.1175/2010JCLI3389.1

    Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal scale climate prediction in the North Atlantic sector. Nature 453:84

    Article  Google Scholar 

  • Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V, van den Dool H, Jenne R, Fiorino M (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–268

    Article  Google Scholar 

  • Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38(9):1913–1930. doi:10.1175/2008JPO3775.1

    Article  Google Scholar 

  • Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17(7):1605–1614

    Article  Google Scholar 

  • Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of the Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Locarnini RA, Garcia HE, Mishonov AV (2009) Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys Res Lett 36:L07608. doi:10.1029/2008GL037155

    Google Scholar 

  • Lherminier P, Mercier H, Huck T, Gourcuff C, Perez FF, Morin P, Kermabon C (2010) The meridional overturning circulation and the subpolar gyre observed at the A025-OVIDE section in June 2002 and 2004. Deep-Sea Res I 57:1374–1391. doi:10.1016/j.dsr.2010.07.009

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, no. 27, ISSN no: 1288-1619

  • Madec G, Delecluse P (1997) The OPA/ARPEGE and OPA/LMD global ocean–atmosphere coupled model. Int WOCE Newslett 26

  • Mignot J, Frankignoul C (2005) The variability of the Atlantic meridional overturning circulation, the North Atlantic oscillation, and the El Nino Southern oscillation in the Bergen climate model. J Clim 18(13):2361–2375. doi:10.1175/JCLI3405.1

    Article  Google Scholar 

  • Mignot J, Khodri M, Frankignoul C, Servonnat J (2011) Volcanic impact on the Atlantic ocean over the last millennium. Clim Past 7:1439–1455. doi:10.1007/s00382-012-1466-1

    Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62. doi:10.1007/s00382-008-0452-0

    Article  Google Scholar 

  • Msadek R, Dixon K, Delworth T, Hurling W (2010) Assessing the predictability of the Atlantic meridional overturning and associated fingerprints. Geophys Res Lett 37:L19608. doi:10.1029/2010GL044517

    Google Scholar 

  • Otterå OH, Bentsen M, Drange H, Suo L (2010) External forcing as a metronome for Atlantic multidecadal variability. Nat Geosci 3:688–694. doi:10.1038/ngeo955

    Article  Google Scholar 

  • Pohlmann H et al (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17:4463–4472

    Article  Google Scholar 

  • Pohlmann H, Jungclaus J, Köhl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938

    Article  Google Scholar 

  • Persechino A, Mignot J, Swingedouw D, Labetoule S, Guilyardi E Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A model. Clim Dyn (submitted)

  • Peterson LC, Haug GH, Hughen KA, Rohl U (2000) Rapid changes in the hydrologic cycle of the tropical North Atlantic during the last glacial. Science 290:1947–1951

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268:137–142

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296. doi:10.1175/2007JCLI2100.1. http://dx.doi.org/

    Google Scholar 

  • Stenchikov G, Delworth TL, Ramswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res 114:D16104. doi:10.1029/2008JD011673

    Article  Google Scholar 

  • Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M , Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Google Scholar 

  • Sundby S, Drinkwater K (2007) On the mechanisms behind salinity anomaly signals of the northern North Atlantic. Prog Oceanogr 73:190–202

    Article  Google Scholar 

  • Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of fresh water release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22:6377-6403

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grotzner A (1998) North Atlantic interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1932

    Article  Google Scholar 

  • Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA–LIM global coupled sea ice–ocean model. Ocean Model 8(1–2):175. doi:10.1016/j.ocemod.2003.12.009

    Article  Google Scholar 

  • Tulloch R, J Marshall (2012) Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J Clim 25:4067–4080. doi:10.1175/JCLI-D-11-00460.1

    Google Scholar 

  • van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38(7):1263–1280. doi:10.1007/s00382-012-1313-4

    Article  Google Scholar 

  • Zanchettin D, Timmreck C, Graf H-F, Rubino A, Lorenz S, Lohmann K, Krueger K, Jungclaus JH (2012) Bi-decadal variability excited in the coupled ocean–atmosphere system by strong tropical volcanic eruptions. Clim Dyn 39(1–2):419–444. doi:10.1007/s00382-011-1167-1

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267

    Article  Google Scholar 

  • Zhang S, Rosati A, Harrison MJ (2009) Detection of multi-decadal oceanic variability by ocean data assimilation in the context of a “perfect” coupled model. J Geophys Res 14:C12018. doi:10.1029/2008JC005261

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sophie Szopa for providing the external forcing data (Fig. 1). We also thank Jean-Louis Dufresne for fruitful discussions concerning the historical simulations and Sébastien Denvil, Marie-Alice Foujols and Arnaud Caubel for running the historical simulations. We wish to acknowledge the use of the Ferret software for analysis and graphics in this paper and the help of Patrick Brockmann for the use of this software. This research was supported was supported by the “Gestion des Impacts du Changement Climatique” Programme (GICC) under the EPIDOM project funded by MEDDTL (French Minister of Ecology and sustained development). We also acknowledge financial support from the CNRS/INSU/LEFE/EVE French program through the Ti Ammo project. The work presented has largely benefited from the work of our colleagues of the IPSL Climate Modeling Centre. This work benefited of the HPC resources of CCRT and IDRIS made available by GENCI (Grand Equipement National de Calcul Intensif). We also would like to thank the anonymous referees for their constructive and helpful remarks on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Swingedouw.

Additional information

This paper is a contribution to the special issue on the IPSL and CNRM global climate and Earth System Models, both developed in France and contributing to the 5th coupled model intercomparison project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swingedouw, D., Mignot, J., Labetoulle, S. et al. Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40, 2381–2399 (2013). https://doi.org/10.1007/s00382-012-1516-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1516-8

Keywords

Navigation