Antonov JI et al (2009) World ocean database 2009, vol 2: salinity. US Government Printing Office, Washington, D.C
Google Scholar
Aumont O (2003) An ecosystem model of the global ocean including Fe, Si, P colimitations. Global Biogeochem Cycles 17(2). doi:10.1029/2001GB001745
Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles 20(2). doi:10.1029/2005GB002591
Aumont O, Orr JC, Monfray P, Ludwig W, Amiotte-Suchet P, Probst J-L (2001) Riverine-driven interhemispheric transport of carbon. Global Biogeochem Cycles 15(2):393–405. doi:10.1029/1999GB001238
Article
Google Scholar
Axell L (2002) Wind-driven internal waves and Langmuir circulations in a numerical ocean model of the southern Baltic Sea. J Geophys Res Oceans 107. doi:10.1029/2001JC000922
Barnier B et al (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56(5–6):543–567. doi:10.1007/s10236-006-0082-1
Google Scholar
Behrenfeld MJ (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Cycles 19(1). doi:10.1029/2004GB002299
Behrenfeld MJ (2010) Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91(4):977–989. doi:10.1890/09-1207.1
Article
Google Scholar
Behrenfeld MJ et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755. doi:10.1038/nature05317
Article
Google Scholar
Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363–1388
Article
Google Scholar
Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311. doi:10.1016/j.ocemod.2007.10.003
Article
Google Scholar
Cadule P, Friedlingstein P, Bopp L, Sitch S, Jones CD, Ciais P, Piao SL, Peylin P (2010) Benchmarking coupled climate-carbon models against long-term atmospheric CO2 easurements. Global Biogeochem Cycles 24(2):GB2016. doi:10.1029/2009GB003556
Article
Google Scholar
Cariolle D, Teyssedre H (2007) A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations. Atmos Chem Phys 7(9):2183–2196
Article
Google Scholar
Carr M-E et al (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res Part II 53(5–7):741–770. doi:10.1016/j.dsr2.2006.01.028
Article
Google Scholar
Cunningham SA (2003) Transport and variability of the Antarctic circumpolar current in drake passage. J Geophys Res 108(C5). doi:10.1029/2001JC001147
de Baar HJW, de Jong JTM (2001) The biogeochemistry of iron in seawater. Distributions, sources and sinks of iron in seawater. Wiley, Hoboken, NJ
de Boyer Montégut C (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109(C12). doi:10.1029/2004JC002378
Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266
Article
Google Scholar
Doney S (1999) Major challenges confronting marine biogeochemical modeling. Global Biogeochem Cycles 13(3):705–714
Article
Google Scholar
Doney SC (2004) Evaluating global ocean carbon models: the importance of realistic physics. Global Biogeochem Cycles 18(3). doi:10.1029/2003GB002150
Downes SM, Bindoff NL, Rintoul SR (2011) Impacts of climate change on the subduction of mode and intermediate water masses in the southern ocean. J Clim 22(12):3289–3302. doi:10.1175/2008JCLI2653.1
Article
Google Scholar
Dufresne J-L et al (2012) The IPSL-CM5A earth system model: general description and climate change projections. Clim Dyn (submitted)
Dunne JP, Sarmiento JL, Gnanadesikan A (2007) A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem Cycles 21(4). doi:10.1029/2006GB002907
Dutay J-C et al (2002) Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models. Ocean Model 4(2):89–120. doi:10.1016/S1463-5003(01)00013-0
Article
Google Scholar
England MH (1995) The age of water and ventilation timescales in a global ocean model. J Phys Oceanogr 25(11):2756–2777
Article
Google Scholar
Eppley RW, Rogers JN, McCarthy JJ (1969) Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr 14:912–920
Google Scholar
Farneti R, Delworth TL, Rosati AJ, Griffies SM, Zeng F (2010) The role of Mesoscale Eddies in the rectification of the southern ocean response to climate change. J Phys Oceanogr 40(7):1539–1557. doi:10.1175/2010JPO4353.1
Article
Google Scholar
Fasham M, Sarmiento J, Slater R, Ducklow H, Williams R (1993) Ecosystem behavior at Bermuda station-S and Ocean Weather Station India—a general-circulation model and observational analysis. Global Biogeochem Cycles 7(2):379–415
Article
Google Scholar
Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609–12646
Article
Google Scholar
Friedrichs MAM, et al. (2007) Assessment of skill and portability in regional marine biogeochemical models: role of multiple planktonic groups. J Geophys Res 112(C8). doi:10.1029/2006JC003852
Friedrichs MAM et al (2009) Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. J Mar Syst 76(1–2):113–133. doi:10.1016/j.jmarsys.2008.05.010
Article
Google Scholar
Ganachaud A (2003) Large-scale mass transports, water mass formation, and diffusivities estimated from World ocean circulation experiment (WOCE) hydrographic data. J Geophys Res Oceans 108. doi:10.1029/2002JC001565
Garcia C, Garcia V, McClain C (2005) Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sens Environ 95(1):125–137. doi:10.1016/j.rse.2004.12.006
Article
Google Scholar
Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Baranova OK, Zweng MM, Johnson DR (2009a) World ocean database 2009, vol 3: dissolved oxygen, apparent oxygen utilization, and oxygen saturation. US Government Printing Office, Washington, DC
Garcia HE, Locarnini RA, Boyer TP, Antonov JI, Zweng MM, Baranova OK, Johnson DR (2009b) World ocean database 2009, vol 4: nutrients (phosphate, nitrate, silicate). US government printing office, Washington, DC
Gehlen M, Bopp L, Emprin N, Aumont O, Heinze C, Ragueneau O (2006) Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences 3(4):521–537
Article
Google Scholar
Gehlen M, Gangstø R, Schneider B, Bopp L, Aumont O, Ethe C (2007) The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4(4):505–519. doi:10.5194/bg-4-505-2007
Article
Google Scholar
Geider R, MacIntyre H, Kana T (1998) A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature. Limnol Oceanogr 43(4):679–694
Article
Google Scholar
Gent PR, Mcwilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155
Article
Google Scholar
Gupta S, Ritchey N, Wilber A, Whitlock C (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12:2691–2710
Article
Google Scholar
Heinze C, Hupe A, Maier-Reimer E, Dittert N, Ragueneau O (2003) Sensitivity of the marine biospheric Si cycle for biogeochemical parameter variations. Global Biogeochem Cycles 17(3). doi:10.1029/2002GB001943
Hewitt HT, Copsey D, Culverwell ID, Harris CM, Hill RSR, Keen AB, McLaren AJ et al (2011) Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci Model Dev 4(2):223–253. doi:10.5194/gmd-4-223-2011
Hood RR et al (2006) Pelagic functional group modeling: progress, challenges and prospects. Deep Sea Res Part II Top Stud Oceanogr 53:459–512
Article
Google Scholar
Houghton R, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the national academy of sciences
Hourdin F et al (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:87–813. doi:10.1007/s00382-006-0158-0
Article
Google Scholar
Hourdin F et al (2012) Climate and sensitivity of the IPSL-CM5A coupled model: impact of the LMDZ atmospheric grid configuration. Clim Dyn (submitted)
Hunke EC, Dukowicz JK (2012) An elastic–viscous–plastic model for sea ice dynamics. J Phys Oceanogr 27(9):1849–1867
Google Scholar
Ito T, Woloszyn M, Mazloff M (2010) Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow. Nature 463(7277):80–83. doi:10.1038/nature08687
Article
Google Scholar
Iudicone D, Madec G, McDougall TJ (2008) Water-mass transformations in a neutral density framework and the key role of light penetration. J Phys Oceanogr 38(7):1357–1376. doi:10.1175/2007JPO3464.1
Article
Google Scholar
Jickells T, Spokes L (2001) The biogeochemistry of iron in seawater. Atmospheric iron inputs to the oceans. Wiley, Hoboken, NJ
Google Scholar
Jin X, Gruber N, Dunne JP, Sarmiento J (2006) Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem Cycles 20. doi:10.1029/2005GB002532
Johnson K, Chavez F, Friederich G (1999) Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398(6729):697–700
Article
Google Scholar
Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77(3):437–472
Article
Google Scholar
Key R et al (2004) A global ocean carbon climatology: results from global data analysis project (GLODAP). Global Biogeochem Cycles 18(4):GB4031. doi:10.1029/2004GB002247
Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34:891–904. doi:10.1007/s00382-009-0642-4
Article
Google Scholar
Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing. Geophys Res Lett 34(4). doi:10.1029/2006GL028405
Kriest I, Khatiwala S, Oschlies A (2010) Towards an assessment of simple global marine biogeochemical models of different complexity. Progr Oceanog 86(3–4):337–360. doi:10.1016/j.pocean.2010.05.002
Article
Google Scholar
Krinner G et al (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19(1):1–33
Article
Google Scholar
Laws E, Falkowski P, Smith W, Ducklow H, McCarthy J (2000) Temperature effects on export production in the open ocean. Global Biogeochem Cycles 14(4):1231–1246
Article
Google Scholar
Le Quéré C et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Global Change Biol 11(11):2016–2040. doi:10.1111/j.1365-2468.2005.01004.x
Google Scholar
Lefèvre F, Brasseur GP, Folkins I, Smith AK, Simon P (1994) Chemistry of the 1991–1992 stratospheric winter: three-dimensional model simulations. J Geophys Res 99(D4):8183–8195. doi:10.1029/93JD03476
Article
Google Scholar
Lefèvre F, Figarol F, Carslaw KS, Peter T (1998) The 1997 Arctic Ozone depletion quantified from three dimensional model simulations. Geophys Res Lett 25(13):2425–2428. doi:10.1029/98GL51812
Article
Google Scholar
Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an earth system model. Geophys Res Lett 36(21):L21602. doi:0.1029/2009GL040145
Article
Google Scholar
Lipschultz F, Wofsy S, Ward B, Codispoti L, Friedrich G, Elkins J (1990) Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South Pacific Ocean. Deep-Sea Res 37(10):1513–1541. doi:10.1016/0198-0149(90)90060-9
Article
Google Scholar
Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia OHE, Baranova OK, Zweng MM (2009) World ocean database 2009, vol 1: temperature. US government printing office, Washington, DC
Ludwig W, Probst J, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochem Cycles 10(1):23–41
Article
Google Scholar
Madec G. (2008a) NEMO ocean engine. Institut Pierre-Simon Laplace (IPSL), France, institut pierre-simon laplace (IPSL), France ed
Madec G (2008b) Global ocean storage of anthropogenic carbon. Institut Pierre-Simon Laplace (IPSL), France, institut pierre-simon laplace (IPSL), Gif-sur-Yvette, France
Madec G, Delecluse P, Levy C (1998) Ocean general circulation model reference manual—note du pôle de modélisation. Institut Pierre Simon Laplace (IPSL)
Manzi AO, Planton S (1994) Implementation of the ISBA parametrization scheme for land surface processes in a GCM—an annual cycle experiment. J Hydrol 155(3–4):353–387. doi:10.1016/0022-1694(94)90178-3
Article
Google Scholar
Marti O et al (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34(1):1–26. doi:10.1007/s00382-009-0640-6
Article
Google Scholar
Martin J-H, Knauer G, Karl D, Broenkow W (1987) VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res 34(2):267–285. doi:10.1016/0198-0149(87)90086-0
Article
Google Scholar
Matsumoto K, Sarmiento JL, Key RM, Aumont O, Bullister JL, Caldeira K, Campin J-M et al (2004) Evaluation of ocean carbon cycle models with data-based metrics. Geophys Res Lett 31(7):L07303. doi:10.1029/2003GL018970
Matsumoto K, Tokos KS, Chikamoto MO, Ridgwell A (2010) Characterizing post-industrial changes in the ocean carbon cycle in an Earth system model. Tellus B 62(4):296–313. doi:10.1111/j.1600-0889.2010.00461.x
Article
Google Scholar
Meehl G, Covey C, Delworth T, Latif M, McAvaney B, Mitchell J, Stouffer R, Taylor K (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394
Google Scholar
Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34(3):693–698. doi:10.1175/2517.1
Article
Google Scholar
Merryfield WJ, Holloway G, Gargett AE (1999) A global ocean model with double-diffusive mixing. J Phys Oceanogr 29(6):1124–1142
Article
Google Scholar
Middelburg J, Soetaert K, Herman P, Heip C (1996) Denitrification in marine sediments: a model study. Global Biogeochem Cycles 10(4):661–673
Article
Google Scholar
Mikalhof-Fletcher S, et al (2007) Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport. Global Biogeochemical Cycles 21(1). doi:10.1029/2006GB002751
Moore J, Doney S, Kleypas J, Glover D, Fung I (2002) An intermediate complexity marine ecosystem model for the global domain. Deep Sea Res Part II 49:403–462
Article
Google Scholar
Moore J, Doney S, Lindsay K (2004) Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. Global Biogeochem Cycles 18(4). doi:10.1029/2004GB002220
Najjar R, et al (2007) Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from phase II of the ocean carbon-cycle model intercomparison project (OCMIP-2). Global Biogeochem Cycles 21(3). doi:10.1029/2006GB002857
Noilhan J, Mahfouf JF (1996) The ISBA land surface parameterisation scheme. Global Planet Change 13(1–4):145–159. doi:10.1016/0921-8181(95)00043-7
Article
Google Scholar
Orr JC (2002) Global Ocean Storage of Anthropogenic Carbon (GOSAC), final report, EC Environment and Climate Programme, Institute Pierre Simon Laplace, Paris
Randall DA, Wood RA, UK (2007) Climate models and their evaluation. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, UK, New York, NY, USA, pp 1–74
Russell JL, Dixon KW, Gnanadesikan A, Stouffer RJ, Toggweiler JR (2006) The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J Clim 19(24):6382–6390
Article
Google Scholar
Saba VS et al (2010) Challenges of modeling depth-integrated marine primary productivity over multiple decades: a case study at BATS and HOT. Global Biogeochem Cycles 24(3). doi:10.1029/2009GB003655
Salas y Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172
Article
Google Scholar
Sallée J-B, Speer K, Rintoul S, Wijffels S (2010) Southern ocean thermocline ventilation. J Phys Oceanogr 40(3):509–529. doi:10.1175/2009JPO4291.1
Article
Google Scholar
Sarmiento J, Gruber N, Brzezinski M, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427(6969):56–60
Article
Google Scholar
Sarmiento J, Monfray P, Maier-Reimer E, Aumont O, Murnane R, Orr J (2000) Sea-air CO2 fluxes and carbon transport: a comparison of three ocean general circulation models. Global Biogeochem Cycles 14(4):1267–1281. doi:10.1029/1999GB900062
Article
Google Scholar
Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, Princeton
Google Scholar
Schlitzer R (2002) Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Research Part II, The Southern Ocean I: climatic changes in the cycle of carbon in the Southern Ocean 49(9–10):1623–1644. doi:10.1016/S0967-0645(02)00004-8
Schneider B et al (2008) Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences 5(2):597–614
Article
Google Scholar
Schulz M (2007) Constraining model estimates of the aerosol radiative forcing. Ph. D. thesis, Université Pierre et Marie Curie, Paris VI
Siegel DA, Doney SC, Yoder JA (2002) The North Atlantic spring phytoplancton bloom and the Sverdrup’s critical depth hypothesis. Science 296:730–733. doi:10.1126/science.1069174
Article
Google Scholar
Simmons H, Jayne S, St Laurent L, Weaver A (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Model 6:245–263. doi:10.1016/S1463-5003(03)00011-8
Article
Google Scholar
Sloyan BM, Rintoul SR (2001) The southern ocean limb of the global deep overturning circulation. J Phys Oceanogr 31(1):143–173
Article
Google Scholar
Smethie W, Fine R (2001) Rates of north Atlantic deep water formation calculated from chlorofluorocarbon inventories. Deep-Sea Res Part I 48(1):189–215
Article
Google Scholar
Soetaert K, Middelburg J, Herman P, Buis K (2000) On the coupling of benthic and pelagic biogeochemical models. Earth Sci Rev 51:173–201
Article
Google Scholar
Steinacher M et al (2010) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7(3):979–1005. doi:10.5194/bg-7-979-2010
Article
Google Scholar
Stow CA, Jolliff J, McGillicuddy DJJ, Doney SC, Allen JI, Friedrichs MAM, Rose KA, Wallheadg P (2009) Skill assessment for coupled biological/physical models of marine systems. J Mar Syst 76:4–15. doi:10.1016/j.jmarsys.2008.03.011
Article
Google Scholar
Sunda W, Huntsman S (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390(6658):389–392
Article
Google Scholar
Szopa S, Cozic A, Shulz M, Balkanski Y, Hauglustaine D et al (2012) Aerosol and Ozone changes as forcing for Climate Evolution between 1850 and 2100. Clim Dyn (submitted)
Takahashi T (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res Part II Top Stud Oceanogr 56(8–10):554–577. doi:10.1016/j.dsr2.2008.12.009
Article
Google Scholar
Takahashi T, Broecker W, Langer S (1985) Redfield ratio based on chemical-data from isopycnal surfaces. J Geophys Res Oceans 90:6907–6924
Article
Google Scholar
Takahashi T, Sutherland SC, Feely RA, Wanninkhof R (2006) Decadal change of the surface water pCO 2in the North Pacific: a synthesis of 35 years of observations. J Geophys Res 111(C7). doi:10.1029/2005JC003074
Takahashi T et al (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Part II 49(9–10):1601–1622. doi:10.1016/S0967-0645(02)00003-6
Article
Google Scholar
Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226. doi:10.1175/1520-0442(2003)016
Article
Google Scholar
Taylor KE, Stouffer RJ, Meehl GA (2009) A summary of the CMIP5 experiment design, vol 4. December 2009 edn, International CLIVAR Project Office
Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc. doi:10.1175/BAMS-D-11-00094.1
Tegen I, Fung I (1995) Contribution to the atmospheric mineral aerosol load from land-surface modification. J Geophys Res Atmos 100:18707–18726
Article
Google Scholar
Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM Support Initiative 3:68
Google Scholar
Voldoire A, et al (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi:10.1007/s00382-011-1259-y
Wanninkhof R (1992) A relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373–7382
Article
Google Scholar
Yu L, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteor Soc 88(4):527–539. doi:10.1175/BAMS-88-4-527
Article
Google Scholar