Skip to main content

Advertisement

Log in

Teleconnections in a warmer climate: the pliocene perspective

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Migrations toward altered sea surface temperature (SST) patterns in the Indo-Pacific region are present in the recent observational record and in future global warming projections. These SSTs are in the form of “permanent” El Niño-like (herein termed “El Padre”) and Indian Ocean Dipole (IOD)-like patterns. The Early Pliocene Warm Period, which bears similarity to future warming projections, may have also exhibited these Indo-Pacific SST patterns, as suggested by regional terrestrial paleo-climatic data and general circulation model studies. The ability to corroborate this assessment with paleo-data reconstructions is an advantage of the warm Pliocene period that is not afforded by future warming scenarios. Thus, the Pliocene period provides us with a warm-climate perspective and test bed for understanding potential changes to future atmospheric interactions given these altered SST states. This study specifically assesses how atmospheric teleconnections from El Padre/IOD SST patterns are generated and propagate to create the regional climate signals of the Pliocene period, as these signals may be representative of future regional climatic changes as well. To do this, we construct a holistic diagnostic rubric that allows us to examine atmospheric teleconnections, both energetically and dynamically, as produced by a general circulation model. We incorporate KE′, a diagnostic adapted from the eddy kinetic energy generation field, to assess the available energy transferred to these teleconnections. Using this methodology, we found that relative to our Modern Control experiments, weaker atmospheric teleconnections prevail under warm Pliocene conditions, although pathways of propagation still appear directed toward the southwestern United States from our tropical Pacific sector forcing. Propagation directly emanating from the Indian Ocean forcing sector appears to be largely blocked, although indirect teleconnective pathways appear traversing the Asian continent toward the North Pacific. The changes in the atmospheric circulation of Indian Ocean region in response to the underlying specified SST forcing (and indicated by Pliocene paleo-data) may have a host of implications for energy transfer out of and into the region, including interactions with the Asian jet stream and changes to the seasonal monsoon cycle. These interactions warrant further study in both past and future warm climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abram NJ, Gagan MK, Cole JE, Hantoro WS, Mudelsee M (2008) Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience 1:849–853

    Article  Google Scholar 

  • Annamalai H, Okajima H, Watanabe M (2007) Possible impact of the Indian Ocean SST on the northern hemisphere circulation during El Niño. J Clim 20:3164–3189

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Article  Google Scholar 

  • Ashok K, Guan Z, Saji NH (2004) Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J Clim 17:3141–3155

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Balachandran NK, Rind D (1995) Modeling the effects of UV variability and the QBO on the troposphere/stratosphere system. Part I: the middle atmosphere. J Clim 8:2058–2079

    Article  Google Scholar 

  • Branstator Grant (1985) Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: forced solutions. J Atmos Sci 42:2225–2241

    Article  Google Scholar 

  • DeWeaver E, Nigam S (2004) On the forcing of ENSO teleconnections by anomalous heating and cooling. J Clim 17:3225–3235

    Article  Google Scholar 

  • Dowsett HJ (2007) The PRISM palaeoclimate reconstruction and Pliocene sea-surface temperature. In: Williams M, Haywood AM, Gregory FJ, Schmidt DN (eds) Deep time perspectives on climate change: marrying the signal from computer models and biological proxies. The Micropalaeontological Society, Special Publications, The Geological Society, London, pp 459–480

    Google Scholar 

  • Held IM, Lyons SW, Nigam S (1989) Transients and the extra-tropical response to El Niño. J Atmos Sci 46(1):163–174

    Article  Google Scholar 

  • Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38:1179–1196

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, De Boyer Montegut C, Behera SK, Luo J, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean dipole on the following year’s El Niño. Nature Geosci 3:168–172

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. IPCC, Geneva, pp 749–843

    Google Scholar 

  • Molnar P, Cane MA (2002) El Niño’s tropical climate and teleconnections as a blueprint for pre-ice age climates. Paleoceanogr 17(2):AN1021

    Google Scholar 

  • Molnar P, Cane MA (2007) Early Pliocene (pre-ice age) El Niño-like global climate: which El Niño? Geosphere 3(5):337–365

    Article  Google Scholar 

  • Plumb RA (1985) On the three-dimensional propagation of stationary waves. J Atmos Sci 42:217–229

    Article  Google Scholar 

  • Ravelo AC (2008) Lessons from the Pliocene warm period and the onset of northern hemisphere glaciation. Eos Trans AGU 89(53):PP23E-01

    Google Scholar 

  • Ravelo AC, Dekens PS, McCarthy M (2006) Evidence for El Niño-like conditions during the Pliocene. GSA Today 16:4–11

    Article  Google Scholar 

  • Rind D, Demenocal P, Russell GL, Sheth S, Collins D, Schmidt GA, Teller J (2001a) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part I: North Atlantic deep water response. J Geophys Res 106:27335–27354

    Article  Google Scholar 

  • Rind D, Russell GL, Schmidt GA, Sheth S, Collins D, Demenocal P, Teller J (2001b) Effects of glacial meltwater in the GISS coupled atmosphere-ocean model: Part II: a bi-polar seesaw in Atlantic deep water production. J Geophys Res 106:27355–27366

    Article  Google Scholar 

  • Rind D, Perlwitz Ju, Lonergan P (2005) AO/NAO response to climate change: 1 respective influences of stratospheric and tropospheric climate changes. J Geophys Res 110:D12107

    Article  Google Scholar 

  • Rind D, Lerner J, Jonas J, McLinden C (2007) The effects of resolution and model physics on tracer transports in the NASA Goddard Institute for space studies general circulation models. J Geophys Res 112:D09315

    Article  Google Scholar 

  • Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz Ja, Perlwitz Ju, Rind D, Romanou A, Russell GL, Mki Sato, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present day atmospheric simulations using GISS ModelE: comparison to in situ, satellite and reanalysis data. J Clim 19:153–192. doi:10.1175/JCLI3612.1

    Article  Google Scholar 

  • Seager R, Ting MF, Held I, Kushnir Y, Lu J, Vecchi GA, Huang HP, Harnik N, Leetmaa A, Lau NC, Li CH, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in Southwestern North America. Science 316:1181–1184. doi:10.1126/science.1139601

    Article  Google Scholar 

  • Shindell DT, Grenfell JL, Rind D, Grewe V, Price C (2001) Chemistry-climate interactions in the Goddard Institute for space studies general circulation model: 1. Tropospheric chemistry model description and evaluation. J Geophys Res 106:8047–8076

    Article  Google Scholar 

  • Shukla SP, Chandler MA, Jonas J, Sohl LE, Mankoff K, Dowsett H (2009) Impact of a permanent El Niño (El Padre) and Indian Ocean dipole in warm Pliocene climates. Paleoceanogr 24:PA2221

    Google Scholar 

  • Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40(6):1363–1392

    Article  Google Scholar 

  • Ting MF, Hoerling MP (1993) Dynamics of stationary wave anomalies during the 1986/87 El Niño. Clim Dyn 9:147–164

    Article  Google Scholar 

  • Ting M, Sardeshmukh PD (1993) Factors determining the extra-tropical response to equatorial diabatic heating anomalies. J Atmos Sci 50(6):907–918

    Article  Google Scholar 

  • Ting M, Hoerling MP, Xu T, Kumar A (1996) Northern hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J Clim 9:2614–2633

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14291–14324

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Niño-like conditions during the Pliocene warm period. Science 309:758–761

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–515

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the National Science Foundation, ATM-0323516 (to Chandler), and the NASA Climate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali P. Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, S.P., Chandler, M.A., Rind, D. et al. Teleconnections in a warmer climate: the pliocene perspective. Clim Dyn 37, 1869–1887 (2011). https://doi.org/10.1007/s00382-010-0976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0976-y

Keywords

Navigation