Skip to main content
Log in

Estimating the potential predictability of Australian surface maximum and minimum temperature

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A study is made of the potential predictability of seasonal means in Australian surface maximum and minimum temperature using monthly data from December 1950 to November 2000. Because the usual assumption of stationarity cannot be applied to the observations at all stations and for all seasons, a modification to an existing methodology is proposed. Here, we show that, to a first order, monthly mean variances within a season can be modeled by a linear relationship, and inter-monthly correlations can be assumed to be stationary. The intraseasonal component of variability can then be estimated using monthly data. Removing the intraseasonal variance from the total interannual variance allows an estimate of the potential predictability to be made. Surface maximum and minimum temperature has high potential predictability over most of northern Australia in the four main seasons. However, there is high potential predictability only in some of the four seasons for the centre and south of Australia. Surface minimum temperature is generally more potentially predictable than surface maximum temperature. The spatial and temporal patterns of potential predictability are generally consistent with published patterns of hindcast skill from a statistical forecast scheme. A comparison between the intraseasonal variance of Australian surface maximum and minimum temperature estimated using the stationary variance assumption and the linear assumptions showed qualitatively and quantitatively similar patterns of distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AGO (2003) Climate change: an Australian guide to the science and potential impacts. In: Pittock B (ed) Australian Greenhouse Office, Canberra, 239 pp

  • Della-Marta P, Collins D, Braganza K (2004) Updating Australia’s high-quality annual temperature dataset. Aust Meteor Mag 53:75–93

    Google Scholar 

  • Drosdowsky W (1993) An analysis of Australian seasonal rainfall anomalies: 1950–1987. II: temporal variability and teleconnection patterns. Int J Clim 13:111–149. doi:10.1002/joc.3370130202

    Article  Google Scholar 

  • Fawcett RJB, Jones DA, Beard GS (2005) A verification of publicly issued seasonal forecasts issued by the Australian Bureau of Meteorology: 1998–2003. Aust Meteor Mag 54:1–13

    Google Scholar 

  • Frederiksen CS, Balgovind RC (1994) The influence of the Indian Ocean/Indonesian SST gradient on the Australian winter rainfall and circulation in an atmospheric GCM. Q J R Meteorol Soc 120:923–952. doi:10.1002/qj.49712051808

    Article  Google Scholar 

  • Frederiksen CS, Frederiksen JS (1996) A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies. J Atmos Sci 53:1410–1432. doi:10.1175/1520-0469(1996)053<;1410:ATMOAN>;2.0.CO;2

    Article  Google Scholar 

  • Frederiksen CS, Zheng X (2007) Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: application to SH winter and summer circulations. Clim Dyn 28:849–866. doi:10.1007/s00382-006-0214-9

    Article  Google Scholar 

  • Frederiksen CS, Zhang H, Balgovind RC, Nicholls N, Drosdowsky W, Chambers L (2001) Dynamical seasonal forecasts during the 1997/98 ENSO using persisted SST anomalies. J Clim 14:2675–2695. doi:10.1175/1520-0442(2001)014<;2675:DSFDTE>;2.0.CO;2

    Article  Google Scholar 

  • Jones DA (1998) The prediction of Australian land surface temperatures using near global sea surface temperature patterns. BMRC Research Report No. 70. Bureau of Meteorology: Australia: www.bom.gov.au/climate/ahead/rr70

  • Jones DA (1999) Characteristics of Australian land surface temperature variability. Theor Appl Climatol 63:11–31. doi:10.1007/s007040050088

    Article  Google Scholar 

  • Jones DA, Trewin BC (2000a) On the relationships between the El Niño-Southern Oscillation and Australian land surface temperature. Int J Clim 20:697–719. doi:10.1002/1097-0088(20000615)20:7<;697::AID-JOC499>;3.0.CO;2-A

    Article  Google Scholar 

  • Jones DA, Trewin BC (2000b) The spatial structure of monthly temperature anomalies over Australia. Aust Meteor Mag 49:261–276

    Google Scholar 

  • Kiladis GN, Mo KC (1998) Interannual and intraseasonal variability in the Southern Hemisphere. In: Karoly DJ, Vincent DG (eds) Meteorology of the Southern Hemisphere. American Meteorological Society, Boston, pp 307–336

    Google Scholar 

  • Leith CE (1973) The standard error of time-average estimates of climatic means. J Appl Meteor 12:1066–1069. doi:10.1175/1520-0450(1973)012<;1066:TSEOTA>;2.0.CO;2

    Article  Google Scholar 

  • Madden RA (1976) Estimates of natural variability of time averaged sea level pressure. Mon Weather Rev 104:942–952. doi:10.1175/1520-0493(1976)104<;0942:EOTNVO>;2.0.CO;2

    Article  Google Scholar 

  • Madden RA (1981) A quantitative approach to long-range prediction. J Geophys Res 86:9817–9825. doi:10.1029/JC086iC10p09817

    Article  Google Scholar 

  • NBS (1964) Handbook of mathematical functions, with formulas, graphs and mathematical tables. In: Abramowitz M, Stegun IA (eds) National Bureau of Standards, Washington, 1046 pp

  • Nicholls N (1981) Air-sea interaction and the possibility of long-range weather prediction in the Indonesian Archipelago. Mon Weather Rev 109:2435–2443. doi:10.1175/1520-0493(1981)109<;2435:ASIATP>;2.0.CO;2

    Article  Google Scholar 

  • Nicholls N (1983) The potential for long-range prediction of seasonal mean temperature in Australia. Aust Meteor Mag 31:203–207

    Google Scholar 

  • Nicholls N (1989) Sea surface temperature and Australian winter rainfall. J Clim 2:965–973. doi:10.1175/1520-0442(1989)002<;0965:SSTAAW>;2.0.CO;2

    Article  Google Scholar 

  • Potts JM, Folland CK, Jolliffe IT, Sexton D (1996) Revised “LEPS” scores for assessing climate model simulations and long-range forecasts. J Clim 9:34–53. doi:10.1175/1520-0442(1996)009<;0034:RSFACM>;2.0.CO;2

    Article  Google Scholar 

  • Power S, Tseitkin F, Torok S, Lavery B, Dahni R, McAvaney B (1998) Australian temperature, Australian rainfall and the Southern Oscillation, 1910–1992: coherent variability and recent changes. Aust Meteor Mag 47:85–101

    Google Scholar 

  • Timbal B, Power S, Colman R, Viviand J, Lirola S (2002) Does soil moisture influence climate variability and predictability over Australia? J Clim 15:1230–1238. doi:10.1175/1520-0442(2002)015<;1230:DSMICV>;2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE (1984) Some effects of finite sample size and persistence on meteorological statistics. Part I: autocorrelations. Mon Weather Rev 112:2359–2368. doi:10.1175/1520-0493(1984)112<;2359:SEOFSS>;2.0.CO;2

    Article  Google Scholar 

  • Trenberth KE (1985) Potential predictability of geopotential heights over the Southern Hemisphere. Mon Weather Rev 113:54–64. doi:10.1175/1520-0493(1985)113<;0054:PPOGHO>;2.0.CO;2

    Article  Google Scholar 

  • Trewin BC (2001) Extreme temperature events in Australia. Ph.D. Thesis, School of Earth Sciences, University of Melbourne, Australia

  • Watterson IG (1997) The diurnal cycle of surface air temperature in simulated present and doubled CO2 climates. Clim Dyn 13:533–545. doi:10.1007/s003820050181

    Article  Google Scholar 

  • Zhang H, Frederiksen CS (2003) Local and nonlocal impacts of soil moisture initialization on AGCM seasonal forecasts: a model sensitivity study. J Clim 16:2117–2137. doi:10.1175/1520-0442(2003)16<;2117:LANIOS>;2.0.CO;2

    Article  Google Scholar 

  • Zheng X (1996) Unbiased estimation of autocorrelation of daily meteorological variables. J Clim 9:2197–2203. doi:10.1175/1520-0442(1996)009<;2197:UEOAOD>;2.0.CO;2

    Article  Google Scholar 

  • Zheng X, Frederiksen CS (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 1, methodology. Clim Dyn 23:177–191. doi:10.1007/s00382-004-0428-7

    Google Scholar 

  • Zheng X, Frederiksen CS (2006) A study of predictable patterns for seasonal forecasting of New Zealand rainfall. J Clim 19:3320–3333. doi:10.1175/JCLI3798.1

    Article  Google Scholar 

  • Zheng X, Nakamura H, Renwick JA (2000) Potential predictability of seasonal means based on monthly time series of meteorological variables. J Clim 13:2591–2604. doi:10.1175/1520-0442(2000)013<;2591:PPOSMB>;2.0.CO;2

    Article  Google Scholar 

  • Zheng X, Sugi M, Frederiksen CS (2004) Interannual variability and predictability in an ensemble of climate simulations with the MRI-JMA AGCM. J Meteor Soc Jap 82:1–18. doi:10.2151/jmsj.82.1

    Article  Google Scholar 

  • Zwiers FW (1996) Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Clim Dyn 12:825–847. doi:10.1007/s003820050146

    Article  Google Scholar 

Download references

Acknowledgments

The Australian surface maximum and minimum temperature datasets were made available by the Australian Bureau of Meteorology National Climate Centre. SG is supported by the Australian Climate Change Science Program of the Australian Department of Climate Change. XZ is supported by the New Zealand Foundation for Research, Science and Technology (contract C01X0701). CSF thanks the support of the Indian Ocean Climate Initiative of the West Australian Department of Environment and Conservation. Comments from R. Colman, B. Timbal and anonymous reviewers helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Grainger.

Appendix

Appendix

Applying the constraints Eqs. 15, 16, 1921, Eqs. 911) become

$$ (\sigma_{2} - \beta )^{2} - 2\sigma_{2} \left( {\sigma_{2} - \beta } \right)\varphi_{12} + \sigma_{2}^{2} \approx a,$$
(25)
$$ \sigma_{2}^{2} (2\varphi_{12} - 1) \approx b,$$
(26)
$$ (\sigma_{2} + \beta )^{2} - 2\sigma_{2} \left( {\sigma_{2} + \beta } \right)\varphi_{12} + \sigma_{2}^{2} \approx c. $$
(27)

A cubic equation for φ 12 can be derived from Eqs. 2527 and takes the form

$$ A\varphi_{12}^{3} + B\varphi_{12}^{2} + C\varphi_{12} + D = 0, $$
(28)

where

$$ A = a + 2b + c, $$
(29)
$$ B = - \frac{5}{2}A - b - \frac{{\left( {c - a} \right)^{2} }}{4b}, $$
(30)
$$ C = 2A + 2b + \frac{{\left( {c - a} \right)^{2} }}{4b}, $$
(31)
$$ D = - \frac{1}{2}A - b - \frac{{\left( {c - a} \right)^{2} }}{16b}. $$
(32)

The real root of Eq. 28 has the standard solution (e.g. NBS 1964)

$$ \varphi_{12} = - \frac{{B^{*} }}{3} + \sqrt[3]{{E + \sqrt {E^{2} + F^{3} } }} + \sqrt[3]{{E - \sqrt {E^{2} + F^{3} } }}, $$
(33)

where

$$ E = \frac{{\left( {9B^{*} C^{*} - 27D^{*} - 2B^{{*^{3} }} } \right)}}{54}, $$
(34)
$$ F = \frac{{\left( {3C^{*} - B^{{*^{2} }} } \right)}}{9}, $$
(35)
$$ B^{*} = \frac{B}{A}, $$
(36)
$$ C^{*} = \frac{C}{A}, $$
(37)
$$ D^{*} = \frac{D}{A}. $$
(38)

As in Zheng et al. (2000), φ 12 is further constrained to lie in [0, 0.1] to reduce the estimation error. Given an estimate for φ 12, estimates for σ 2 and β can then be found by back substitution of φ 12 into Eqs. 25 and 27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grainger, S., Frederiksen, C.S. & Zheng, X. Estimating the potential predictability of Australian surface maximum and minimum temperature. Clim Dyn 32, 443–455 (2009). https://doi.org/10.1007/s00382-008-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0506-3

Keywords

Navigation