Skip to main content

Advertisement

Log in

Climate simulation of the twenty-first century with interactive land-use changes

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

To include land-use dynamics in a general circulation model (GCM), the physical system has to be linked to a system that represents socio-economy. This issue is addressed by coupling an integrated assessment model, IMAGE2.2, to an ocean–atmosphere GCM, CNRM-CM3. In the new system, IMAGE2.2 provides CNRM-CM3 with all the external forcings that are scenario dependent: greenhouse gas (GHGs) concentrations, sulfate aerosols charge and land cover. Conversely, the GCM gives IMAGE changes in mean temperature and precipitation. With this new system, we have run an adapted scenario of the IPCC SRES scenario family. We have chosen a single scenario with maximum land-use changes (SRES A2), to illustrate some important feedback issues. Even in this two-way coupled model set-up, land use in this scenario is mainly driven by demographic and agricultural practices, which overpowers a potential influence of climate feedbacks on land-use patterns. This suggests that for scenarios in which socio-economically driven land-use change is very large, land-use changes can be incorporated in GCM simulations as a one-way driving force, without taking into account climate feedbacks. The dynamics of natural vegetation is more closely linked to climate but the time-scale of changes is of the order of a century. Thus, the coupling between natural vegetation and climate could generate important feedbacks but these effects are relevant mainly for multi-centennial simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alcamo J, Leemans R, Kreileman E (1998) Global modelling of environmental change: an overview of IMAGE 2.1. Global change scenarios of the 21st century. Elsevier, Amsterdam, pp 3–96

  • Bertrand C, Loutre M, Crucifix M (2002) Climate of the last millennium: a sensitivity study. Tellus 54A:221–244

    Google Scholar 

  • Botta A, Foley J (2002) Effects of climate variability and disturbances on the Amazonian terrestrial ecosystems dynamics. Global Biogeochem Cycles 16. doi:10.1029/2000GB001338

  • Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113:2108–2121

    Article  Google Scholar 

  • Bounoua L, DeFries R, Collatz G, Sellers P, Khan H (2002) Effects of land cover conversion on surface climate. Clim Change 52:29–64

    Article  Google Scholar 

  • Braconnot P, Joussaume S, Marti O, de Noblet P (1999) Synergistic feedbacks from ocean and vegetation on the African Monsoon response to mid-Holocene insolation. Geophys Res Lett 26:2481–2484

    Article  Google Scholar 

  • Cariolle D, Déqué M (1986) Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J Geophys Res 91:10825–10846

    Google Scholar 

  • Chase T, Pielke R, Kittel T, Nemani R, Running S (2000) Simulated impacts of historical land cover changes on global climate in northern winter. Clim Dyn 16:93–105

    Article  Google Scholar 

  • Cox P, Betts R, Jones C, Spall S, Totterdell I (2000) Acceleration of Global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187

    Article  Google Scholar 

  • Côté J, Staniforth A (1988) A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon Weather Rev 116:2003–2012

    Article  Google Scholar 

  • DeFries R, Bounoua L, Collatz G (2002) Human modification of the landscape and surface climate in the next fifty years. Global Change Biol 8:438–458

    Article  Google Scholar 

  • Delire C, Foley J, Thompson S (2004) Long-term variability in a coupled atmosphere-biosphere model. J Clim 17:3947–3959

    Article  Google Scholar 

  • Déqué M (1999) Documentation ARPEGE-Climat. CNRM Available from Centre National de Recherches Meteorologiques, Météo-France, Toulouse

  • Eickhout B, den Elzen M, Kreileman E (2001) The atmospheric ocean system in IMAGE 2.2. National Institute for Public Health and the Environment, Bilthoven, The Netherlands. Tech. Rep. No. 481508017

  • Feddema J, Oleson K, Bonan G, Mearns L, Washington W, Meehl G, Nychka D (2005a) A comparison of a GCM response to historical anthropogenic land cover change and model sensitivity to uncertainty in present-day land cover representations. Clim Dyn 25:581–609

    Article  Google Scholar 

  • Feddema J, Oleson K, Bonan G, Mearns L, Buja L, Meehl G, Washington W (2005b) The importance of land-cover change in simulating future climates. Science 310:1674–1678

    Article  Google Scholar 

  • Fisher G, van Velthuizen H, Nechtergaele F, Medow S (2000) CD-ROM: Global Agro-Ecological Zones. Food and Agriculture Organization of United Nations, Rome, Italy; and International Institute for Applied Systems Analysis, Laxenburg, Austria

  • Foley J, Prentice I, Ramankutty N, Levis S, Pollard D, Sitch S, Haxeltine A (1996) An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem Cycles 10:603–628

    Article  Google Scholar 

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Klein Tank A (2002) Observed coherent changes in climate extremes during the second half of the twentieth century. Clim Res 19:193–212

    Google Scholar 

  • Govindasamy B, Duffy P, Caldeira K (2001) Land use changes and northern hemisphere cooling. Geophys Res Lett 28:291–294

    Article  Google Scholar 

  • Henderson-Sellers A, Dickinson R, Dubridge T, Kennedy P, McGuffie K, Pitman A (1993) Tropical deforestation: modelling local- to regional-scale climate change. J Geophys Res 98:7289–7315

    Article  Google Scholar 

  • Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, John/son C (2001) Climate Change 2001: The scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hulme M, Wigley T, Barrow E, Raper S, Centella A, Smith S, Chipanski A (2000) Using a climate scenario generator for vulnerability and adaptation assessments: MAGICC and SCENGEN version 2.4 workbook. Climate Research Unit, Norwich

  • Joos F, Bruno M, Fink R, Siegenthaler U, Stocker T, Le Quéré C, Sarmiento J (1996) An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B:397–417

    Google Scholar 

  • Lean J, Rowntree P (1997) Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Clim 10:1216–1235

    Article  Google Scholar 

  • Leemans R, van den Born GJ (1994) Determining the potential global distribution of natural vegetation, crops and agricultural productivity. Wat Air Soil Pollut 76:133–162

    Article  Google Scholar 

  • Louis JF, Tiedke M, Geleyn JF (1982) A short history of the operational PBL-parameterization at ECMWF. ECMWF Workshop Planetary Boundary Layer Parameterization. ECMWF, Reading, pp 59–80

  • Madec G, Delecluse P, Imbard M, Lévy C (1997) OPA version 8.0 ocean general circulation model reference manual. LODYC Available from Laboratoire d’Océanographie Dynamique et de Climatologie, IPSL, Paris

  • Mahfouf J-F, Manzi A, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE Part I: implementation and preliminary results. J Clim 8:2039–2057

    Article  Google Scholar 

  • Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1 km resolution in meteorological and climate models. J Clim 16:1261–1282

    Google Scholar 

  • Matthews H, Weaver A, Meissner K, Gillett N, Eby M (2004) Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle. Clim Dyn 22:461–479. doi:10.1007/s00382-004-0392-2

    Article  Google Scholar 

  • Morcrette JJ (1990) Impact of changes to the radiation transfer parameterizations plus cloud optical properties in the ECMWF model. Mon Weather Rev 118:847–873

    Article  Google Scholar 

  • Nakicenovic E, Alcamo J, Davis J, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung Y, Kram T, La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2001) IPCC Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • Notaro M, Liu Z, Gallimore R, Vavrus S, Kutzbach J (2005) Simulated and observed preindustrial to modern vegetation and climate changes. J Clim 18:3650–3671

    Article  Google Scholar 

  • Oki T, Sud Y (1998) Design of total runoff integrating pathways (TRIP): a global river channel network. Earth Interactions 2, paper 1

  • Parmesan C, Root T, Willig M (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Pitman A, Zhao M (2000) The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys Res Lett 27:1267–1270

    Article  Google Scholar 

  • Prentice I, Cramer W, Harrison S, Leemans R, Monserud R, Solomon A (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Biogeogr J 19:117–134

    Article  Google Scholar 

  • Ricard JL, Royer JF (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115

    Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Mod 4:137–172

    Article  Google Scholar 

  • Salas-Mélia D, Chauvin F, Déqué M, Douville H, Guérémy J, Marquet P, Planton S, Royer J, Tyteca S (2006) Description and validation of the CNRM-CM3 global coupled model. CNRM, Note de Centre n 103

  • Schlesinger ME, Malyshev S, Rozanov EV et al (2000) Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions. Technol Forecasting Soc Change 65:167–193

    Article  Google Scholar 

  • Seguin B (2005) Impacts sur l’agriculture. Changements climatiques: quels impacts en france?, pp 100–107

  • Sitch S, Prentice I, Smith B, Cramer W, Kaplan J, Lucht W, Sykes M, Thonike K, Venevsky S (2003) LPJ- A coupled model for vegetation dynamics and the terrestrial carbon cycle. Global Change Biol 9:161–185

    Article  Google Scholar 

  • Sud Y, Walker G, Kim J, Liston G, Sellers P, Lau W (1996) Biogeophysical consequences of a tropical deforestation scenario: a GCM simulation study. J Clim 9:3225–3247

    Article  Google Scholar 

  • Taylor C, Lambin E, Stephenne N, Harding R, Essery R (2002a) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629

    Article  Google Scholar 

  • Taylor C, Lambin E, Stephenne N, Harding R, Essery R (2002b) The influence of land use change on climate in the Sahel. J Clim 15:3615–3629

    Article  Google Scholar 

  • Terray L, Valcke S, Piacentini A (1998) OASIS 2.2 User’s guide and reference manual. CERFACS, France

    Google Scholar 

  • Van Minnen JG, Leemans R, Ihle F (2000) Defining the importance of including transient ecosystem responses to simulate C-cycle dynamics in a global change model. Global Change Biol 6:595–612

    Article  Google Scholar 

  • Voldoire A (2006) Quantifying the impact of future land-use changes against increases in GHG concentrations. Geophys Res Lett 33(4). doi:1029/2005GL024354

  • Voldoire A, Royer J (2004) Tropical deforestation and climate variability. Clim Dyn 22:857–874. doi:10.1007/s00382-004-0423-z

    Article  Google Scholar 

  • Wang G, Eltahir E, Foley J, Pollard D, Levis S (2004) Decadal variability of rainfall in the Sahel: results from the coupled GENESIS-IBIS atmosphere-biosphere model. Clim Dyn 22:625–637. doi:10.1007/s00382-004-0411-3

    Article  Google Scholar 

  • Zhao M, Pitman A (2002) The regional scale impact of land cover change simulated with a climate model. Int J Climatol 22:271–290

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the anonymous reviewers whose comments and suggestions have greatly improved the paper. This work has been supported by the European Commission Sixth Framework Program (ENSEMBLES contract GOCE-CT-2003-505539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurore Voldoire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voldoire, A., Eickhout, B., Schaeffer, M. et al. Climate simulation of the twenty-first century with interactive land-use changes. Clim Dyn 29, 177–193 (2007). https://doi.org/10.1007/s00382-007-0228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-007-0228-y

Keywords

Navigation