Skip to main content
Log in

Determining the potential distribution of vegetation, crops and agricultural productivity

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The terrestrial biosphere component of the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) uses changes in land cover to compute dynamically the greenhouse gas fluxes between the terrestrial biosphere and the atmosphere. Potential land cover for both natural ecosystems and agrosystems, are determined with the Terrestrial Vegetation Model (TVM). TVM consists of separate submodels for the water-balance, global vegetation patterns, crop distribution and potential rain fed crop yield. All these submodels are based on local climatic, hydrological and soil characteristics and appropriate global data bases for those parameters are collected or compiled. The structure of all models, data bases and linkages between them and other modules of IMAGE 2.0 are described. Although computationally demanding, the models give an adequate description of the global vegetation and agricultural patterns. The only discrepancy occurs in regions where the vegetation and agricultural distribution depends on causes other than climatic, such as additional water storage and supply, anthropogenic influence and natural disturbance. Despite this discrepancy, we conclude that TVM simulates satisfactory global vegetation characteristics and that it can be adequately integrated with other models of IMAGE 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo, J., G.J.J. Kreileman, M. Krol and G. Zuidema: 1994, Modeling the global society-biosphere-climate system, Part 1: model description and testing, Wat. Air Soil Pollut., 76 (this volume).

  • Anonymous: 1978, Report on the agro-ecological zones project. Vol 3. Methodology and results for South and Central America, World Soil Resources Report 48/3, Food and Agriculture Organization of the United Nations, Rome, 251 pp.

  • Anonymous: 1987, Agroclimatological data for Asia, FAO Plant Production and Protection Series 25, Food and Agriculture Organization of the United Nations, Rome.

  • Anonymous: 1991, Plant-Water Interactions in Large-Scale Hydrological Modelling, IGBP-Report No. 17, International Geosphere-Biosphere Programme, Stockholm, 44 pp.

  • Anonymous: 1992, Convention on Biological Diversity, Biol. Int., 25: 22–38.

  • Bazzaz, F.A. and E.D. Fajer: 1992, Plant life in a CO2-rich world, Sci. Am., 1992: 18–21.

    Google Scholar 

  • Bouwman, A.L. and R. Leemans: 1994, The role of forest soils in the global carbon cycle, Soil Sci. Soc. Am. J., (in press).

  • Box, E.O.: 1981, Macroclimate and Plant Forms: an Introduction to Predictive Modeling in Phytogeography, Dr. W. Junk Publishers, 258 pp.

  • Budyko, M.I.: 1986, The Evolution of the Biosphere, D.Reidel Publishing Company, 423 pp.

  • Chadwyck-Healey: 1992, World climate disc: Global climate change data, CD-ROM Chadwyck-Healey, Ltd., Cambridge.

    Google Scholar 

  • Emanuel, W.R., H.H. Shugart and M.P. Stevenson: 1985, Climatic change and the broad-scale distribution of terrestrial ecosystems complexes, Clim. Change, 7: 29–43.

    Google Scholar 

  • Espenshade, E.B., Jr. and J.L. Morrison (eds): 1991, Goode's World Atlas, Rand McNally & Company, 368 pp.

  • FAO/CSRC: 1974, Soil map of the world, 1.5M, UNESCO, Paris. 1/2 degree digitization, University of Hew Hampshire, Durham, N.C.

    Google Scholar 

  • FAO/UNESCO: 1974, Soil Map of the World, 1∶5,000,000, Food and Agriculture Organisation.

  • Federal Climate Complex: 1992, International Station Meteorological Climate Summary Version 2.0, CD-ROM Naval Oceanography Command Detachment Asheville, USAFETA OL-A and National Climate Data Center, Asheville.

    Google Scholar 

  • Federer, C.A.: 1982, Transpirational supply and demand: Plant, soil and atmospheric effects evaluated by simulation, Water Resour. Res., 18: 355–362.

    Google Scholar 

  • Gifford, R.M.: 1979, Growth and yield of CO2-enriched wheat under water-limited conditions, Austr. J. Plant. Physiol., 6: 367–378.

    Google Scholar 

  • Gribbin, J. and H.H. Lamb: 1978, Climatic change in historical times, in: J. Gribben (ed), Climatic Change, Cambridge University Press, pp. 68–82.

  • Guetter, P.J. and J.E. Kutzbach: 1990, A modified Köppen classification applied to model simulations of glacial and interglacial climates, Climatic Change, 16: 193–215.

    Google Scholar 

  • de Haan, B.J., M. Jonas, O. Klepper, J. Krabec, M.S. Krol and K. Olendrzynski: 1994, An atmosphere-ocean model for evaluation of climate scenarios, Wat. Air Soil Pollut., 76 (this volume).

  • Henderson-Sellers, A.: 1991, Developing an interactive biosphere for global climate models, Vegetatio, 91: 149–166.

    Google Scholar 

  • Holdridge, L.R.: 1947, Determination of world plant formations from simple climatic data, Science, 105: 367–368.

    Google Scholar 

  • Hutchinson, M.F.: 1987, Methods of generation of weather sequences, in: A.H. Bunting (ed), Agricultural Environments. Characterization, Classification and Mapping, C.A.B. International, pp. 149–157.

  • Kineman, J.J.: 1992, Global Ecosystems database Version 1.0 (on CDROM) User's guide, Key to Geophysical Records Documentation No. 26, USDOC/NOAA National Oceanic and Atmospheric Administration, Boulder, Colorado, 121 pp.

    Google Scholar 

  • Kineman, J.J. and M.A. Ohrenschall: 1992, Global Ecosystems database Version 1.0 (on CDROM) Disc-A, Documentation manual, Key to Geophysical Records Documentation No. 27, USDOC/NOAA National Oceanic and Atmospheric Administration, Boulder, Colorado, 240 pp.

    Google Scholar 

  • Klein-Goldewijk, K., J.G. van Minnen, G.J.J. Kreileman, M. Vloedbeld and R. Leemans: 1994, Simulating the carbon flux between the terrestrial environment and the atmosphere, Wat. Air Soil Pollut., 76 (this volume).

  • Köppen, W.: 1936, Das geographische System der Klimate, in: W. Köppen and R. Geiger (eds), Handbuch der Klimatologie, Gebrüder Borntraeger, pp. 1–46.

  • Körner, C.: 1993, CO2 fertilization: The great uncertainty in future vegetation development, in: A.M. Solomon and H.H. Shugart (eds), Vegetation Dynamics and Global Change, Chapman and Hall, pp. 53–70.

  • Küchler, A.W.: 1947, A geographic system of vegetation, Geogr. Rev., 37: 233–240.

    Google Scholar 

  • Küchler, A.W.: 1949, A physiognomic classification of vegetation, Ann. Ass. Amer. Geog., 39: 201–210.

    Google Scholar 

  • Leemans, R.: 1992, Modelling ecological and agricultural impacts of global change on a global scale, J. Sci. Ind. Res., 51: 709–724.

    Google Scholar 

  • Leemans, R.: 1994, The use of plant functional type classifications to model the global land cover and simulate the interactions between the terrestrial biosphere and the atmosphere, in: T.M. Smith, H.H. Shugart and F.I. Woodward (eds), Plant Functional Types Classifications, Cambridge University Press, (in press).

  • Leemans, R. and W. Cramer: 1991, The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid, Research Report RR-91-18, International Institute of Applied Systems Analyses, Laxenburg, 61 pp.

    Google Scholar 

  • Leemans, R. and P. Halpin: 1992, Global change and biodiversity, in: B. Groombridge (ed), Biodiversity 1992: Status of the Earth's Living Resources, Chapman and Hall, pp. 254–255.

  • Leemans, R. and A.M. Solomon: 1993, The potential response and redistribution of crops under a doubled CO2 climate, Clim. Res., 3: 79–96.

    Google Scholar 

  • Legates, D.R. and C.J. Willmott: 1990a, Mean seasonal and spatial variability in gauge corrected, global precipitation, Int. J. Climatol., 10: 111–127.

    Google Scholar 

  • Legates, D.R. and C J. Willmott: 1990b, Mean seasonal and spatial variability in global surface air temperature, Theor. Appl. Climatol., 41: 11–21.

    Google Scholar 

  • Matson, P.A. and S.L. Ustin: 1991, The future of remote sensing in ecological sciences, Ecology, 72: 1917–1945.

    Google Scholar 

  • Matthews, E.: 1985, Atlas of archived vegetation, land-use and seasonal albedo data sets, Technical Memorandum 86199, NASA, New York, 23 pp.

    Google Scholar 

  • Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore III, C.J. Vorosmarty and A.L. Schloss: 1993, Global climate change and terrestrial net primary production, Nature, 363: 234–239.

    Google Scholar 

  • Monserud, R.A. and R. Leemans: 1992, The comparison of global vegetation maps, Ecol. Modelling, 62: 275–293.

    Google Scholar 

  • Mücher, C.A., T.J. Stomph and L.O. Fresco: 1993, Proposal for a global land use classification, Final Report LUIS FAO, ITC and WAU, Rome, Enschede, and Wageningen, 37 pp.

  • Müller, M.J.: 1982, Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science, Dr. W. Junk Publishers, 306 pp.

  • Neilson, R.P., G.A. King and G. Koerper: 1992, Toward a rule-based biome model, Landscape Ecol., 7: 27–43.

    Google Scholar 

  • Olson, J., J.A. Watts and L.J. Allison: 1985, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database, Report NDP-017, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 164 pp.

    Google Scholar 

  • Overpeck, J.T., D. Rind and R. Goldberg: 1990, Climate-induced changes in forest disturbance and vegetation, Nature, 343:51–53.

    Google Scholar 

  • Peters, R.L.: 1992, Conservation of biological diversity in the face of climate change, in: R.L. Peters and T.E. Lovejoy (eds), Global Warming and Biological Diversity, Yale University Press, pp. 15–30.

  • Prentice, I.C., W. Cramer, S.P. Harrison, R. Leemans, R.A. Monserud and A.M. Solomon: 1992, A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19: 117–134.

    Google Scholar 

  • Prentice, I.C., M.T. Sykes and W. Cramer: 1993, A simulation model for the transient effects of climate change on forest landscapes, Ecol. Model., 65: 51–70.

    Google Scholar 

  • Prentice, I.C., R.S. Webb, M.T. Ter-Mikhaelian, A.M. Solomon, T.M. Smith, S.E. Pitovranov, N.T. Nikolov, A.A. Minin, R. Leemans, S. Lavorel, M.D. Korzukhin, H.O. Helmisaari, J.P. Hrabovszky, S.P. Harrison, R.W. Emanuel and G.B. Bonan: 1989, Developing a Global Vegetation Dynamics Model: Results of an IIASA Summer Workshop, IIASA research report RR-89-7, International Institute of Applied Systems Analysis, Laxenburg, Austria, 48 pp.

    Google Scholar 

  • Prentice, K.C. and I.Y. Fung: 1990, The sensitivity of terrestrial carbon storage to climate change, Nature, 346: 48–51.

    Google Scholar 

  • Rind, D., C. Rosenzweig and R. Goldberg: 1992, Modelling the hydrological cycle in assessments of climate change, Nature, 358: 119–122.

    Google Scholar 

  • Rock, B.N., D.L. Skole and B.J. Choudhury: 1993, Monitoring vegetation change using satellite data, in: A.M. Solomon and H.H. Shugart (eds), Vegetation Dynamics and Global Change, Chapman and Hall, pp. 153–167.

  • Smith, T.M., R. Leemans and H.H. Shugart: 1992, Sensitivity of terrestrial carbon storage to CO2 induced climate change: Comparison of four scenarios based on general circulation models, Clim. Change, 21: 367–384.

    Google Scholar 

  • Townshend, J., J. Cihlar, C. Justice, J.-P. Malingreau, S. Ruttenberg, F. Sadowski, D. Skole and P. Teillet: 1991, A new high resolution global dataset for land applications. IGBP-DIS's pilot land cover project working group., Universite de Paris, Paris.

    Google Scholar 

  • Townshend, J.R.G.: 1992, Improved Global data for land Application: A proposal for a New High Resolution Data Set, IGBP-Report No.20, International Geoshere-Biosphere Programme, Stockholm, 87 pp.

    Google Scholar 

  • Tucker, C.J., J.R. Townshend and T.E. Goff: 1985, African land-cover classification using satellite data, Science, 227: 369–375.

    Google Scholar 

  • Turner, B.L., R.H. Moss and D.L. Skole: 1993, Relating Land Use and Global Change: A Proposal for an IGBP-HDP Core Project, IGBP Report No.24 and HDP Report No. 5, International Geosphere-Biosphere Programme and the Human Dimensions of Global Environmental Change Programme, Stockholm, 65 pp.

    Google Scholar 

  • Vloedbeld, M. and R. Leemans: 1993, Quantifying feedback processes in the response of the terrestrial carbon cycle to global change — the modeling approach of image-2, Water Air Soil Pollut., 70: 615–628.

    Google Scholar 

  • von Humboldt, F.H.A.: 1807, Ideen zu einer Geographie der Pflanzen neben einem naturgemalde der Tropenländer.

  • Walter, H. and E. Box: 1976, Global classification of natural terrestrial ecosystems, Vegetatio, 32: 75–81.

    Google Scholar 

  • Willmott, C.J., C.M. Rowe and W.D. Philpot: 1985, Small scale climate maps: a sensitivity analysis of some common assumptions associated with grid point interpolation and contouring, Am. Cart., 12: 5–16.

    Google Scholar 

  • de Wit, C.T.: 1965, Photosynthsis of leaf canopies, Agricultural Research Report 663, Centre for Agricultural Publicaton and Documentation, Wageningen.

    Google Scholar 

  • Wood, S.R. and F.J. Dent: 1983, LECS: A Land Evaluation Computer System, Manual AGOF/IN S/78/006 Manual 5 and 6, Ministry of Agriculture, Government of Indonesia, United Nations Development Programme, and Food and Agriculture Organization, Rome, 221 and 157 pp.

    Google Scholar 

  • Woodward, F.I.: 1987, Climate and Plant Distribution, Cambridge University press, 174 pp.

  • Zobler, L.: 1986, A World Soil File for Global Climate Modeling, Technical Memorandum NASA, New York, 32 pp.

    Google Scholar 

  • Zuidema, G., G.J. van den Born, J. Alcamo and G.J.J. Kreileman: 1994, Simulating changes in global land cover as affected by economic and climatic factors, Wat. Air Soil Pollut., 76 (this volume).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leemans, R., van den Born, G.J. Determining the potential distribution of vegetation, crops and agricultural productivity. Water Air Soil Pollut 76, 133–161 (1994). https://doi.org/10.1007/BF00478338

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00478338

Keywords

Navigation