Skip to main content
Log in

Epigenetics to clinicopathological features: a bibliometric analysis of H3 G34-mutant diffuse hemispheric glioma literature

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Pediatric-type diffuse high-grade gliomas are the leading cause of cancer-related morbidity and mortality in children. More than 30% of diffuse hemispheric gliomas (DHG) in adolescents harbor histone H3 G34 mutations and are recognized by the World Health Organization as a distinct tumor entity. By reporting bibliometric characteristics of the most cited publications on H3 G34-mutant DHG (H3 G34 DHG), we provide an overview of emerging literature and speculate where future research efforts may lead.

Methods

One hundred fourteen publications discussing H3 G34 DHG were identified, categorized as basic science (BSc), clinical (CL), or review (R), and ranked by citation number. Various bibliometric parameters were summarized, and a comparison between article types was performed.

Results

Articles within this study represent principal investigators from 15 countries and were published across 63 journals between 2012 and 2024, with 36.84% of articles originating in the United States. Overall median values were as follows: citation count, 20 (range, 0–2591), number of authors, 9 (range, 2–78), and year of publication, 2020 (range, 2012–2024). Among the top ten most cited articles, BSc articles accounted for all ten reports. Compared to CL and R articles, BSc articles were published in journals with higher impact factors.

Conclusion

We establish variability in bibliometric parameters for the most cited publications on H3 G34 DHG. Our findings demonstrate a paucity of high-impact and highly cited CL reports and acknowledge an unmet need to intersect basic mechanism with clinical data to inform novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper or are included in supplementary table 1.

References

  1. Ostrom QT, Price M, Ryan K, Edelson J, Neff C, Cioffi G et al (2022) CBTRUS statistical report: pediatric brain tumor foundation childhood and adolescent primary brain and other central nervous system tumors diagnosed in the United States in 2014–2018. Neuro Oncol 24((Suppl 3)):iii1–iii38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ward E, DeSantis C, Robbins A, Kohler B, Jemal A (2014) Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64(2):83–103

    Article  PubMed  Google Scholar 

  3. Schwartzentruber, Korshunov J, Liu A, Jones XY, Pfaff DT, Jacob E et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–31

    Article  CAS  PubMed  Google Scholar 

  4. Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22(4):425–437

    Article  CAS  PubMed  Google Scholar 

  5. Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 34(4):520–37 e5

    Article  Google Scholar 

  7. Chen CCL, Deshmukh S, Jessa S, Hadjadj D, Lisi V, Andrade AF et al (2020) Histone H3.3G34-mutant interneuron progenitors co-opt PDGFRA for gliomagenesis. Cell 183(6):1617–33 e22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korshunov A, Capper D, Reuss D, Schrimpf D, Ryzhova M, Hovestadt V et al (2016) Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 131(1):137–146

    Article  CAS  PubMed  Google Scholar 

  9. Ocasio JK, Budd KM, Roach JT, Andrews JM, Baker SJ (2023) Oncohistones and disrupted development in pediatric-type diffuse high-grade glioma. Cancer Metastasis Rev 42(2):367–388

    Article  CAS  PubMed  Google Scholar 

  10. Funato K, Smith RC, Saito Y, Tabar V (2021) Dissecting the impact of regional identity and the oncogenic role of human-specific NOTCH2NL in an hESC model of H3.3G34R-mutant glioma. Cell Stem Cell 28(5):894-905 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, Alfazema N et al (2021) Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 28(5):877–93 e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129(5):669–678

    Article  CAS  PubMed  Google Scholar 

  14. Bjerke L, Mackay A, Nandhabalan M, Burford A, Jury A, Popov S et al (2013) Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov 3(5):512–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mackay A, Burford A, Molinari V, Jones DTW, Izquierdo E, Brouwer-Visser J et al (2018) Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial. Cancer Cell 33(5):829–42 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ebrahimi A, Skardelly M, Bonzheim I, Ott I, Muhleisen H, Eckert F et al (2016) ATRX immunostaining predicts IDH and H3F3A status in gliomas. Acta Neuropathol Commun 4(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grill J, Massimino M, Bouffet E, Azizi AA, McCowage G, Canete A et al (2018) Phase II, Open-Label, Randomized, Multicenter Trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol 36(10):951–958

    Article  CAS  PubMed  Google Scholar 

  18. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive molecular and clinical heterogeneity in patients with histologically diagnosed CNS-PNET treated as a single entity: a report from the Children’s Oncology Group Randomized ACNS0332 Trial. J Clin Oncol 36(34):JCO2017764720

    Article  PubMed  Google Scholar 

  19. Gessi M, Gielen GH, Hammes J, Dorner E, Muhlen AZ, Waha A et al (2013) H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications? J Neurooncol 112(1):67–72

    Article  CAS  PubMed  Google Scholar 

  20. Yoshimoto K, Hatae R, Sangatsuda Y, Suzuki SO, Hata N, Akagi Y et al (2017) Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathol 34(3):103–12

    Article  PubMed  Google Scholar 

  21. Roux A, Pallud J, Saffroy R, Edjlali-Goujon M, Debily MA, Boddaert N et al (2020) High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts. Neuro Oncol 22(8):1190–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF (2019) Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers (Basel) 11(5)

  23. Kallappagoudar S, Yadav RK, Lowe BR, Partridge JF (2015) Histone H3 mutations--a special role for H3.3 in tumorigenesis? Chromosoma 124(2):177–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fontebasso AM, Liu XY, Sturm D, Jabado N (2013) Chromatin remodeling defects in pediatric and young adult glioblastoma: a tale of a variant histone 3 tail. Brain Pathol 23(2):210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wood MD, Halfpenny AM, Moore SR (2019) Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol 14(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  26. Vanan MI, Eisenstat DD (2014) Management of high-grade gliomas in the pediatric patient: past, present, and future. Neurooncol Pract 1(4):145–157

    PubMed  PubMed Central  Google Scholar 

  27. Salloum R, McConechy MK, Mikael LG, Fuller C, Drissi R, DeWire M et al (2017) Characterizing temporal genomic heterogeneity in pediatric high-grade gliomas. Acta Neuropathol Commun 5(1):78

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gerges N, Fontebasso AM, Albrecht S, Faury D, Jabado N (2013) Pediatric high-grade astrocytomas: a distinct neuro-oncological paradigm. Genome Med 5(7):66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khazaei S, Chen CCL, Andrade AF, Kabir N, Azarafshar P, Morcos SM et al (2023) Single substitution in H3.3G34 alters DNMT3A recruitment to cause progressive neurodegeneration. Cell 186(6):1162–78 e20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andrade AF, Chen CCL, Jabado N (2023) Oncohistones in brain tumors: the soil and seed. Trends Cancer 9(5):444–455

    Article  CAS  PubMed  Google Scholar 

  31. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fang J, Huang Y, Mao G, Yang S, Rennert G, Gu L et al (2018) Cancer-driving H3G34V/R/D mutations block H3K36 methylation and H3K36me3-MutSalpha interaction. Proc Natl Acad Sci U S A 115(38):9598–9603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hummel TR, Salloum R, Drissi R, Kumar S, Sobo M, Goldman S et al (2016) A pilot study of bevacizumab-based therapy in patients with newly diagnosed high-grade gliomas and diffuse intrinsic pontine gliomas. J Neurooncol 127(1):53–61

    Article  CAS  PubMed  Google Scholar 

  34. Crotty EE, Leary SES, Geyer JR, Olson JM, Millard NE, Sato AA et al (2020) Children with DIPG and high-grade glioma treated with temozolomide, irinotecan, and bevacizumab: the Seattle Children’s Hospital experience. J Neurooncol 148(3):607–617

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez Gutierrez D, Jones C, Varlet P, Mackay A, Warren D, Warmuth-Metz M et al (2020) Radiological evaluation of newly diagnosed non-brainstem pediatric high-grade glioma in the HERBY Phase II Trial. Clin Cancer Res 26(8):1856–1865

    Article  PubMed  Google Scholar 

  36. Khan NR, Thompson CJ, Taylor DR, Gabrick KS, Choudhri AF, Boop FR et al (2013) Part II: should the h-index be modified? An analysis of the m-quotient, contemporary h-index, authorship value, and impact factor. World Neurosurg 80(6):766–774

    Article  PubMed  Google Scholar 

  37. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482

    Article  CAS  PubMed  Google Scholar 

  38. Fontebasso AM, Schwartzentruber J, Khuong-Quang DA, Liu XY, Sturm D, Korshunov A et al (2013) Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas. Acta Neuropathol 125(5):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jordan T. Roach, Frederick A. Boop, and David J. Daniels conceptualized the project. Jordan T. Roach drafted the manuscript and all figures. Cecile Riviere-Cazaux assisted with data collection and data analysis. Brennan A. Wells assisted with data collection. All authors critically reviewed and revised the manuscript.

Corresponding author

Correspondence to Jordan T. Roach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roach, J.T., Riviere-Cazaux, C., Wells, B.A. et al. Epigenetics to clinicopathological features: a bibliometric analysis of H3 G34-mutant diffuse hemispheric glioma literature. Childs Nerv Syst (2024). https://doi.org/10.1007/s00381-024-06395-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00381-024-06395-8

Keywords

Navigation