Skip to main content

Advertisement

Log in

Development of shunt valves used for treating hydrocephalus: comparison with endoscopy treatment

  • Review
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

The pathophysiology of hydrocephalus is not clearly defined. Thus, treatment will remain empirical until a fuller understanding of the various forms of hydrocephalus is achieved. Valve-controlled shunting has been the mainstay of therapy since the late 1950s. Initially, shunting occurred from the ventricular system to the atrium. In the 1970s, VA shunts were replaced by ventriculoperitoneal shunts as the primary location for the distal end. Multiple types of one-way valve systems have been developed in the pursuit of draining the appropriate amount of CSF that avoids either overdrainage or underdrainage while preserving normal brain development and cognition. These valves are reviewed and compared as to their function. Other locations for the distal end of the shunting system are reviewed to include pleural space and gallbladder. The lumbar subarachnoid space as the proximal location for a shunt is also reviewed. The only other surgical alternative for treating hydrocephalus is endoscopic third ventriculostomy. Since 2000, approximately 50% of children with hydrocephalus have been shown to be candidates for ETV. The benefits are the lack of need for an artificial shunt system and thus lower rates of infection and over time fewer reoperations. Future progress is dependent on improved shunt valve systems that are affordable worldwide and ready availability of ETV in developing countries. Anatomic and molecular causes of hydrocephalus need to be defined so that medications or genetic modifications become available for potential cure of hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torkildsen A (1939) A new palliative procedure in cases of inoperable occlusion of the Sylvian duct. Acta Chir Scand 82:177–185

    Google Scholar 

  2. Nulsen FESE (1952) Treatment of hydrocephalus by a direct shunt from ventricle to jugular vein. Surgical Forum 2:399–402

    Google Scholar 

  3. Pudenz RH, Russell FE, Hurd AH, Shelden CH (1957) Ventriculo-auriculostomy; a technique for shunting cerebrospinal fluid into the right auricle; preliminary report. J Neurosurg 14:171–179

    Article  CAS  PubMed  Google Scholar 

  4. Cornejo VJFES (2021) Shunt technology for infants and lifetime. Child’s Nervous System 37:3475–3484

    Article  Google Scholar 

  5. Tomei K (2017) The evolution of cerebrospinal fluid shunts: advances in technology and technique. Pediatr Neurosurg 52:369–380

    Article  PubMed  Google Scholar 

  6. Boockvar JALW, Sutton LN (2000) Development of the Spitz-Holter valve in Philadelphia. J Neurosurg 95:145–147

    Article  Google Scholar 

  7. Sikkens TB (1957) Traitement de l’hydrocephaie du nourrison par ventriculojugulostomie. Neurochirurgia (Stuttg) 3:65–69

    CAS  Google Scholar 

  8. Ingraham FDMD, Alexander E Jr, Woods RP (1948) Studies in the treatment of experimental hydrocephalus. J Neuropathexp Neurol 7:123–143

    Article  CAS  Google Scholar 

  9. EL Foltz BJ (1988) Symptomatic low intracranial pressure in shunted huydrocephalus. J Neurosurg 68:401–408

    Article  CAS  PubMed  Google Scholar 

  10. Christian EA, Quezada JJ, Melamed EF, Lai C, McComb JG (2021) Ventriculopleural shunts in a pediatric population: a review of 170 consecutive patients. J Neurosurg Pediatr 28:450–457

    Article  PubMed  Google Scholar 

  11. Aldana PR, James HE, Postlethwait RA (2008) Ventriculogallbladder shunts in pediatric patients. J Neurosurg Pediatr 1:284–287

    Article  PubMed  Google Scholar 

  12. Ames RH (1967) Ventriculo-peritoneal shunts in the management of hydrocephalus. J Neurosurg 27:525–529

    Article  CAS  PubMed  Google Scholar 

  13. Olsen L, Frykberg T (1983) Complications in the treatment of hydrocephalus in children. A comparison of ventriculoatrial and ventriculoperitoneal shunts in a 20-year material. Acta Paediatr Scand 72:385–390

    Article  CAS  PubMed  Google Scholar 

  14. Robertson JS, Maraqa MI, Jennett B (1973) Ventriculoperitoneal shunting for hydrocephalus. Br Med J 2:289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hahn YS (1994) Use of the distal double-slit valve system in children with hydrocephalus. Childs Nerv Syst 10:99–103

    Article  CAS  PubMed  Google Scholar 

  16. Ved R, Bentley E, Amato-Watkins A, Lang J, Zilani G, Bhatti I, Leach P (2019) One year failure rates for de-novo ventriculo-peritoneal shunts in under 3-month-old children. Br J Neurosurg 33:357–359

    Article  CAS  PubMed  Google Scholar 

  17. Cozzens JW, Chandler JP (1997) Increased risk of distal ventriculoperitoneal shunt obstruction associated with slit valves or distal slits in the peritoneal catheter. J Neurosurg 87:682–686

    Article  CAS  PubMed  Google Scholar 

  18. Del Bigio MR, Sidhu RK, Kazina CJ, Serletis D (2019) Inflammation and obstruction of distal catheter slits in ventriculoperitoneal shunts: likely role of graphite. J Neurosurg 1–8

  19. Wetzel JS, Waldman AD, Texakalidis P, Buster B, Eshraghi SR, Wheelus J, Reisner A, Chern JJ (2019) Survival and failure trends of cerebrospinal fluid shunts with distal slit valves: comparative study and literature review. J Neurosurg Pediatr 1–8

  20. Chhabra D (2023) The saga of the “Chhabra” shunt. Neurol India 67:635–638

    Google Scholar 

  21. Chhabra D, Aggrawal GD, Mittal P (1993) Z flow hydrocephalus shunt, a new approach to the problem of hydrocephalus, the rationale behind its design and the initial results of pressure monitoring after Z flow shunt implantation. Acta Neurochir (Wien) 121:43–47

    Article  CAS  PubMed  Google Scholar 

  22. Warf B (2005) Comparison of 1-year outcomes for the Chhabra and Codman-Hakim Micro Precision shunt systems in Uganda: a prospective study in 195 children. J Neurosurg 102:358–362

    PubMed  Google Scholar 

  23. Mbabzi-Kabachelor E, Shah M, Vaughan KA, Mugamba J, Ssenyonga P, Onen J et al (2019) Infection risk for Bactiseal Universal shunts versus Chhabra shunts in Ugandan infants. A randomized controlled trial. J Neurosurg Pediatr 23:397–406

    Article  Google Scholar 

  24. Kast J, Duong D, Nowzari F, Chadduck WM, Schiff SJ (1994) Time-related patterns of ventricular shunt failure. Childs Nerv Syst 10:524–528

    Article  CAS  PubMed  Google Scholar 

  25. Mazza C, Pasqualin A, Da Pian R (1980) Results of treatment with ventriculoatrial and ventriculoperitoneal shunt in infantile nontumoral hydrocephalus. Childs Brain 7:1–14

    CAS  PubMed  Google Scholar 

  26. Sainte-Rose C (1993) Shunt obstruction: a preventable complication? Pediatr Neurosurg 19:156–164

    Article  CAS  PubMed  Google Scholar 

  27. Pedersen SH, Prein TH, Ammar A, Grotenhuis A, Hamilton MG, Hansen TS, Kehler U, Rekate H, Thomale UW, Juhler M (2023) How to define CSF overdrainage: a systematic literature review. Acta Neurochir (Wien) 165:429–441

    Article  PubMed  Google Scholar 

  28. Pudenz RH, Foltz EL (1991) Hydrocephalus: overdrainage by ventricular shunts. A review and recommendations Surg Neurol 35:200–212

    CAS  PubMed  Google Scholar 

  29. Rekate HL (1993) Classification of slit-ventricle syndromes using intracranial pressure monitoring. Pediatr Neurosurg 19:15–20

    Article  CAS  PubMed  Google Scholar 

  30. Alghamdi KT, Alghamdi MD, Neazy S, Algamdi MM, Alzahrani A, Khan MA, Algahtani A (2022) Incidental and clinical significance of slit ventricles in fixed pressure valves. Cureus 14:e30902

    PubMed  PubMed Central  Google Scholar 

  31. Pudenz RH (1990) Pudenz antisiphon device tear as a cause of shunt malfunction. Childs Nerv Syst 6:117

    Article  CAS  PubMed  Google Scholar 

  32. Koueik J, Kraemer MR, Hsu D, Rizk E, Zea R, Haldeman C, Iskandar BJ (2019) A 12-year single-center retrospective analysis of antisiphon devices to prevent proximal ventricular shunt obstruction for hydrocephalus. J Neurosurg Pediatr 1–10

  33. Panagopoulos D, Strantzalis G, Gavra M, Boviatsis E, Korfias S (2022) The role of antisiphon devices in the prevention of central ventricular catheter obliteration for hydrocephalus: a 15-years institution’s experience retrospective analysis. Children (Basel) 9

  34. Drake J, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J Jr, Schiff SJ, Cochrane DD, Steinbok P, Macneil N (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–303

    Article  CAS  PubMed  Google Scholar 

  35. Hanlo PW, Cinalli G, Vandertop WP, Faber JA, Bøgeskov L, Børgesen SE, Boschert J, Chumas P, Eder H, Pople IK, Serlo W, Vitzthum E (2003) Treatment of hydrocephalus determined by the European Orbis Sigma Valve II survey: a multicenter prospective 5-year shunt survival study in children and adults in whom a flow-regulating shunt was used. J Neurosurg 99:52–57

    Article  PubMed  Google Scholar 

  36. Rampini PM ZM, Sganzeria E, Farabola M (1991) Advantages of the Orbis-Sigma valve in the treatment of triventricular hydrocephalus. Neuro-Oncology 387–391

  37. Serlo W (1995) Experiences with flow-regulated shunts (Orbis-Sigma valves) in cases of difficulty in managing hydrocephalus in children. Childs Nerv Syst 11:166–169

    Article  CAS  PubMed  Google Scholar 

  38. Sainte-Rose C, Hooven MD, Hirsch JF (1987) A new approach in the treatment of hydrocephalus. J Neurosurg 66:213–226

    Article  CAS  PubMed  Google Scholar 

  39. Bierbauer KSSB, McLone DG, Tomita T, Dauser R (1990) A prospective, randomized study of shunt function and infections as a function of shunt placement. Pediatr Neurosurg 16:287–291

    Article  Google Scholar 

  40. Drake JM, Kestle JRW, Tuli S (2000) CSF shunts 50 years on – past, present and future. Child’s Nervous System 16:800–804

    Article  CAS  PubMed  Google Scholar 

  41. Soler GJ, Bao M, Jaiswal D, Zaveri HP, DiLuna ML, Grant RA, Hoshino K (2018) A review of cerebral shunts, current technologies, and future endeavors. Yale J Biol Med 91:313–321

    PubMed  PubMed Central  Google Scholar 

  42. Shellock FG, Habibi R, Knebel J (2006) Programmable CSF shunt valve: in vitro assessment of MR imaging safety at 3T. AJNR Am J Neuroradiol 27:661–665

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shellock FG, Bedwinek A, Oliver-Allen M, Wilson SF (2011) Assessment of MRI issues for a 3-T “immune” programmable CSF shunt valve. AJR Am J Roentgenol 197(1):202–207

    Article  PubMed  Google Scholar 

  44. Mirzayan MJ, Klinge PM, Samii M, Goetz F, Krauss JK (2012) MRI safety of a programmable shunt assistant at 3 and 7 Tesla. Br J Neurosurg 26:397–400

    Article  PubMed  Google Scholar 

  45. Eklund A, Koskinen LO, Williams MA, Luciano MG, Dombrowski SM, Malm J (2012) Hydrodynamics of the Certas™ programmable valve for the treatment of hydrocephalus. Fluids Barriers CNS 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lemcke J, Meier U, Müller C, Fritsch MJ, Kehler U, Langer N, Kiefer M, Eymann R, Schuhmann MU, Speil A, Weber F, Remenez V, Rohde V, Ludwig HC, Stengel D (2013) Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: a pragmatic, randomised, open label, multicentre trial (SVASONA). J Neurol Neurosurg Psychiatry 84:850–857

    Article  PubMed  Google Scholar 

  47. Martinez-Lage J, Almagro MJ, Del Rincon IS, Perez-Espejo MA, Piqueras C, Alfaro R, de San R, Pedro J (2008) Management of neonatal hydrocephalus: feasability of use and safety of two programmable (Sophy and Polaris) valves. Child’s Nervous System 24:549–556

    Article  PubMed  Google Scholar 

  48. McGirt M, Buck DW 2nd, Sciubba D, Woodworth GF, Carson B, Weingart J, Jallo G (2007) Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus. Child’s Nervous System 23:289–295

    Article  PubMed  Google Scholar 

  49. Mangano F, Menendez JA, Habrock T, Narayan P, Leonard JR, Park TS, Smyth MD (2005) Early programmable valve malfunctions in pediatric hydrocephalus. J Neurosurg 103:501–507

    PubMed  Google Scholar 

  50. Czosnyka Z, Czosnyka M, Pickard JD (1999) Hydrodynamic performance of a new siphon preventing device: the SiphonGuard. J Neurol Neurosurg Psychiatry 66:408–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rohde V, Haberl EJ, Ludwig H, Thomale UW (2009) First experiences with an adjustable gravitational valve in childhood hydrocephalus. J Neurosurg Pediatr 3:90–93

    Article  PubMed  Google Scholar 

  52. Thomale UW, Gebert AF, Haberl H, Schulz M (2013) Shunt survival rates by using the adjustable differential pressure valve combined with a gravitational unit (proGAV) in pediatric neurosurgery. Childs Nerv Syst 29:425–431

    Article  PubMed  Google Scholar 

  53. Baird LC, Mazzola CA, Auguste KI, Klimo P, Jr., Flannery AM (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 5: effect of valve type on cerebrospinal fluid shunt efficacy. J Neurosurg Pediatr 14 Suppl 1:35–43

  54. Hall BJ, Gillespie CS, Sunderland GJ, Conroy EJ, Hennigan D, Jenkinson MD, Pettorini B, Mallucci C (2021) Infant hydrocephalus: what valve first? Childs Nerv Syst 37:3485–3495

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jones RF, Currie BG, Kwok BC (1988) Ventriculopleural shunts for hydrocephalus: a useful alternative. Neurosurgery 23:753–755

    Article  CAS  PubMed  Google Scholar 

  56. Hoffman HJ, Hendrick EB, Humphreys RP (1983) Experience with ventriculo-pleural shunts. Childs. Brain 10:404–413

    CAS  Google Scholar 

  57. Ferguson A (1898) Intraperitoneal diversion of the cerebrospinal fluid in cases of hydrocephalus. New York Med J 67

  58. Cushing H (ed) (1908) Surgery of the head. W. B. Saunders, Philadelphia

  59. Heile B (1914) Zur chirurgischen Behandlung des Hydocephalus internus durch Ableitung der Cerebrospinalflussigkeit nach der Bauchhohle und nach der Pleurakuppe. Arch Klin Chir 105:501–516

    Google Scholar 

  60. Eisenberg H, Davidson RJ, Shillito J Jr (1971) Lumboperitoneal shunts. J Neurosurg 35:427–431

    Article  CAS  PubMed  Google Scholar 

  61. Selman WR, Spetzler RF, Wilson CB, Grollmus JW (1980) Percutaneous lumboperitoneal shunt: review of 130 cases. Neurosurgery 6:255–257

    Article  CAS  PubMed  Google Scholar 

  62. Spetzler RF, Wilson CB, Grollmus JM (1975) Percutaneous lumboperitoneal shunt. Technical note J Neurosurg 43:770–773

    CAS  PubMed  Google Scholar 

  63. Aoki N (1990) Lumboperitoneal shunt: clinical applications, complications, and comparison with ventriculoperitoneal shunt. Neurosurgery 26:998–1003; discussion 1003–1004

  64. Wang VY, Barbaro NM, Lawton MT, Pitts L, Kunwar S, Parsa AT, Gupta N, McDermott MW (2007) Complications of lumboperitoneal shunts. Neurosurgery 60:1045–1048; discussion 1049

  65. Chumas PD, Armstrong DC, Drake JM, Kulkarni AV, Hoffman HJ, Humphreys RP, Rutka JT, Hendrick EB (1993) Tonsillar herniation: the rule rather than the exception after lumboperitoneal shunting in the pediatric population. J Neurosurg 78:568–573

    Article  CAS  PubMed  Google Scholar 

  66. McGirt MJ, Woodworth G, Thomas G, Miller N, Williams M, Rigamonti D (2004) Cerebrospinal fluid shunt placement for pseudotumor cerebri-associated intractable headache: predictors of treatment response and an analysis of long-term outcomes. J Neurosurg 101:627–632

    Article  PubMed  Google Scholar 

  67. Menger RP, Connor DE Jr, Thakur JD, Sonig A, Smith E, Guthikonda B, Nanda A (2014) A comparison of lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension: an analysis of economic impact and complications using the Nationwide Inpatient Sample. Neurosurg Focus 37:E4

    Article  PubMed  Google Scholar 

  68. Azad TD, Zhang Y, Varshneya K, Veeravagu A, Ratliff JK, Li G (2020) Lumboperitoneal and ventriculoperitoneal shunting for idiopathic intracranial hypertension demonstrate comparable failure and complication rates. Neurosurgery 86:272–280

    Article  PubMed  Google Scholar 

  69. Hoffman H, Harwood-Nash D, Gilday D (1980) Percutaneous third ventriculostomy in the management of noncommunicating hydrocephalus. Neurosurgery 7:313–321

    Article  CAS  PubMed  Google Scholar 

  70. Cinalli G, Salazar C, Mallucci C, Yada JZ, Zerah M, Sainte-Rose C (1998) The role of endoscopic third ventriculostomy in the management of shunt malfunction. Neurosurgery 43:1323–1327; discussion 1327–1329

  71. Kulkarni AV, Warf BC, Drake JM, Mallucci CL, Sgouros S, Constantini S (2010) Surgery for hydrocephalus in sub-Saharan Africa versus developed nations: a risk-adjusted comparison of outcome. Childs Nerv Syst 26:1711–1717

    Article  PubMed  Google Scholar 

  72. de Ribaupierre S, Rilliet B, Vernet O, Regli L, Villemure JG (2007) Third ventriculostomy vs ventriculoperitoneal shunt in pediatric obstructive hydrocephalus: results from a Swiss series and literature review. Childs Nerv Syst 23:527–533

    Article  PubMed  Google Scholar 

  73. Roth J, Bo X, Beni-Adani L, Elran H, Constantini S (2007) Endoscopic third ventriculostomy–a physiological alternative to shunts as treatment for obstructive hydrocephalus in children. Harefuah 146(660–665):735

    PubMed  Google Scholar 

  74. Lam S, Harris D, Rocque BG, Ham SA (2014) Pediatric endoscopic third ventriculostomy: a population based study. J Neurosurg Pediatrics 14:455–464

    Article  Google Scholar 

  75. Dewan MC, Lim J, Shannon CN, Wellons JC 3rd (2017) The durability of endoscopic third ventriculostomy and ventriculoperitoneal shunts in children with hydrocephalus following posterior fossa tumor resection: a systematic review and time-to-failure analysis. J Neurosurg Pediatr 19:578–584

    Article  PubMed  Google Scholar 

  76. Kulkarni AV, Drake JM, Kestle JR, Mallucci CL, Sgouros S, Constantini S (2010) Endoscopic third ventriculostomy vs cerebrospinal fluid shunt in the treatment of hydrocephalus in children: a propensity score-adjusted analysis. Neurosurgery 67:588–593

    Article  PubMed  Google Scholar 

  77. Kulkarni AV, Riva-Cambrin J, Holubkov R, Browd SR, Cochrane DD, Drake JM, Limbrick DD, Rozzelle CJ, Simon TD, Tamber MS, Wellons JC 3rd, Whitehead WE, Kestle JR (2016) Endoscopic third ventriculostomy in children: prospective, multicenter results from the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr 18:423–429

    Article  PubMed  Google Scholar 

  78. Stovell M, Zakaria R, Ellenbogen JR, Gallagher MJ, Jenkinson MD, Hayhurst C, Malucci CL (2016) Long-term follow-up of endoscopic third ventriculostomy performed in the pediatric population. J Neurosurg Pediatrics 17:734–738

    Article  Google Scholar 

  79. Kulkarni AV, Drake JM, Kestle JR, Mallucci CL, Sgouros S, Constantini S (2010) Predicting who will benefit from endoscopic third ventriculostomy compared with shunt insertion in childhood hydrocephalus using the ETV success score. J Neurosurg Pediatr 6:310–315

    Article  PubMed  Google Scholar 

  80. Furtado LMF, da Costa Val Filho JA, Dos Santos Júnior EC (2021) External validation of the ETV success score in 313 pediatric patients: a Brazilian single-center study. Neurosurg Rev 44:2727–2734

    Article  PubMed  Google Scholar 

  81. Kulkarni AV, Riva-Cambrin J, Browd SR (2011) Use of the ETV success score to explain the variation in reported endoscopic third ventriculostomy success rates among published case series of childhood hydrocephalus. J Neurosurg Pediatr 7:143–146

    Article  PubMed  Google Scholar 

  82. Yordanov S, Garnett MR, Santarius T, Holland K, Jalloh I, Jawad Naushahi M (2022) An audit of endoscopic third ventriculostomy (ETV) in a regional paediatric neurosurgical centre assessing the accuracy and feasibility of the ETV success score. Acta Neurochir (Wien) 164:1453–1458

    Article  PubMed  Google Scholar 

  83. Ben-Israel D, Mann JA, Yang MMH, Isaacs AM, Cadieux M, Sader N, Muram S, Albakr A, Manoranjan B, Yu RW, Beland B, Hamilton MG, Spackman E, Ronksley PE, Riva-Cambrin J (2022) Clinical outcomes in pediatric hydrocephalus patients treated with endoscopic third ventriculostomy and choroid plexus cauterization: a systematic review and meta-analysis. J Neurosurg Pediatr: 1–13

  84. Ellenbogen Y, Brar K, Yang K, Lee Y, Ajani O (2020) Comparison of endoscopic third ventriculostomy with or without choroid plexus cauterization in pediatric hydrocephalus: a systematic review and meta-analysis. J Neurosurg Pediatr 26:371–378

    Article  PubMed  Google Scholar 

  85. Stone S, Warf BC (2014) Combined endoscopic third ventriculostomy and choroid plexus cauterization as primary treatment for infantshydrocephalus: a prospective North American series. J Neurosurg Pediatrics 14:439–446

    Article  Google Scholar 

  86. Warf B (2013) The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. World Neurosurg 79:S23.e13–25

  87. Konstantelias AA, Vardakas KZ, Polyzos KA, Tansarli GS, Falagas ME (2015) Antimicrobial-impregnated and -coated shunt catheters for prevention of infections in patients with hydrocephalus: a systematic review and meta-analysis. J Neurosurg 122:1096–1112

    Article  PubMed  Google Scholar 

  88. Zhou WX, Hou WB, Zhou C, Yin YX, Lu ST, Liu G, Fang Y, Li JW, Wang Y, Liu AH, Zhang HJ (2021) Systematic review and meta-analysis of antibiotic-impregnated shunt catheters on anti-infective effect of hydrocephalus shunt. J Korean Neurosurg Soc 64:297–308

    Article  PubMed  PubMed Central  Google Scholar 

  89. Guinane JE (1977) Why does hydrocephalus progress? J Neurol Sci 32:1–8

    Article  CAS  PubMed  Google Scholar 

  90. Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: have we been asking the wrong question? J Neurol Sci 269:1–11

    Article  PubMed  Google Scholar 

  91. Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  PubMed  Google Scholar 

  92. Rekate HL (2020) Hydrocephalus in infants: the unique biomechanics and why they matter. Childs Nerv Syst 36:1713–1728

    Article  PubMed  Google Scholar 

  93. Lylyk P, Lylyk I, Bleise C, Scrivano E, Lylyk PN, Beneduce B, Heilman CB, Malek AM (2022) First-in-human endovascular treatment of hydrocephalus with a miniature biomimetic transdural shunt. J Neurointerv Surg 14:495–499

    Article  PubMed  Google Scholar 

  94. Hladky SB, Barrand MA (2022) The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19:9

    Article  PubMed  PubMed Central  Google Scholar 

  95. Penn RD, Linninger A (2009) The physics of hydrocephalus. Pediatr Neurosurg 45:161–174

    Article  PubMed  Google Scholar 

  96. Jin SC, Dong W, Kundishora AJ, Panchagnula S, Moreno-De-Luca A, Furey CG, Allocco AA, Walker RL, Nelson-Williams C, Smith H, Dunbar A, Conine S, Lu Q, Zeng X, Sierant MC, Knight JR, Sullivan W, Duy PQ, DeSpenza T, Reeves BC, Karimy JK, Marlier A, Castaldi C, Tikhonova IR, Li B, Peña HP, Broach JR, Kabachelor EM, Ssenyonga P, Hehnly C, Ge L, Keren B, Timberlake AT, Goto J, Mangano FT, Johnston JM, Butler WE, Warf BC, Smith ER, Schiff SJ, Limbrick DD Jr, Heuer G, Jackson EM, Iskandar BJ, Mane S, Haider S, Guclu B, Bayri Y, Sahin Y, Duncan CC, Apuzzo MLJ, DiLuna ML, Hoffman EJ, Sestan N, Ment LR, Alper SL, Bilguvar K, Geschwind DH, Günel M, Lifton RP, Kahle KT (2020) Exome sequencing implicates genetic disruption of prenatal neuro-gliogenesis in sporadic congenital hydrocephalus. Nat Med 26:1754–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Desai B, Hsu Y, Schneller B, Hobbs JG, Mehta AI, Linninger A (2016) Hydrocephalus: the role of cerebral aquaporin-4 channels and computational modeling considerations of cerebrospinal fluid. Neurosurgical Focus FOC 41:E8

    Article  Google Scholar 

  98. Hochstetler A, Raskin J, Blazer-Yost BL (2022) Hydrocephalus: historical analysis and considerations for treatment. Eur J Med Res 27:168

    Article  PubMed  PubMed Central  Google Scholar 

  99. MacAulay N (2021) Molecular mechanisms of brain water transport. Nat Rev Neurosci 22:326–344

    Article  CAS  PubMed  Google Scholar 

  100. Xu H, Fame RM, Sadegh C, Sutin J, Naranjo C, Della S, Cui J, Shipley FB, Vernon A, Gao F, Zhang Y, Holtzman MJ, Heiman M, Warf BC, Lin P-Y, Lehtinen MK (2021) Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early postnatal development. Nat Commun 12:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Robinson S, Jantzie LL (2022) Pathogenesis of posthemorrhagic hydrocephalus of prematurity: new horizons. Semin Perinatol 46:151596

    Article  PubMed  Google Scholar 

  102. Ahn SY, Chang YS, Sung SI, Park WS (2018) Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase I dose-escalation clinical trial. Stem Cells Transl Med 7:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors Charles H. Fleming, Ann M. Ritter, and Derek A Bruce reviewed the manuscript. Ann M. Ritter had main input to the section—Future. Charles H. Fleming had main input to the sections on programable valves and lumboperitoneal shunts. Derek A Bruce had main input into history of shunts and endoscopic therapy.

Corresponding author

Correspondence to Derek A. Bruce.

Ethics declarations

Conflict of interest

None of the authors have any competing interests, financial or otherwise regarding this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, C.H., Ritter, A.M. & Bruce, D.A. Development of shunt valves used for treating hydrocephalus: comparison with endoscopy treatment. Childs Nerv Syst 39, 2709–2717 (2023). https://doi.org/10.1007/s00381-023-06049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-023-06049-1

Keywords

Navigation