Skip to main content

Advertisement

Log in

Management of neonatal hydrocephalus: feasibility of use and safety of two programmable (Sophy and Polaris) valves

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Neonates represent a unique group of pediatric patients with special peculiarities. Hydrocephalus valves have not always been designed to meet the requirements of these small children. Few series have addressed the problem of cerebrospinal fluid shunting in newborn babies.

Objectives

We aimed (1) to evaluate the feasibility of the use of two programmable valves (Sophy and Polaris) in hydrocephalic neonates and (2) to ascertain complications and safety issues arising from their use.

Materials and methods

We performed a prospective study of 100 consecutive preterm and term babies (<2 months of age) given a programmable valve. Valves’ settings were readjusted at different pressure levels as required. Outcomes were obtained from the records of our Outpatient Clinic.

Results

The study group was formed by 60 term and 40 preterm infants (average weight 2,440 g, mean age of 25 days). Mean follow-up was 55 months. Only one fifth deaths was shunt-related. In 70 babies, no complications occurred, and hydrocephalus was successfully controlled. Proximal catheter obstruction presented in 20% and infection in 5% of cases. Several external adjustments of the valves apparently avoided several surgical shunt revisions.

Conclusions

(1) Both programmable valves (Sophy and Polaris) can be safely used for treatment of neonatal hydrocephalus, introducing some technical modifications. (2) Both valves are comparable to other shunts with regard to indications, performance, and safety. (3) The possibility of modifying their working pressure seems to constitute their main advantage. Prevention of late overdrainage syndromes with these valves needs a longer follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahn ES, Bookland M, Carson BS, Weingart JD, Jallo GI (2007) The Strata programmable valve for shunt-dependent hydrocephalus: the pediatric experience at a single institution. Childs Nerv Syst 23:297–303

    Article  PubMed  Google Scholar 

  2. Aihara N, Tagaki T, Hashimoto N, Fukushima T, Karasawa K, Fuse T (1997) Breakage of shunt devices (Sophy programmable pressure valve) following implantation in the hypochondria region. Childs Nerv Syst 13:636–638

    Article  PubMed  CAS  Google Scholar 

  3. Anderson RCE, Walker ML, Viner JM, Kestle JRW (2004) Adjustment and malfunction of a programmable valve after exposure to toy magnets. J Neurosurg (Pediatrics 2) 101:222–225

    Google Scholar 

  4. Arnell K, Eriksson E, Olsen L (2006) The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7 year retrospective study with special focus on cost/benefit analysis. Eur J Pediatr Surg 16:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Bret Ph, Guyotat J, Ricci AC, Mottolese C, Jouanneau E (1999) Expérience clinique de la valve réglable Sophy® dans le traitement de l’hydrocéphalie de ládulte. Une série de 147 cas. Neurochirurgie 45:98–109

    PubMed  CAS  Google Scholar 

  6. Bruisma N, Stobbering EE, Herpers MJHM, Vies JSH, Weber BJ, Gavilanes DAWD (2000) Subcutaneous ventricular catheter reservoirs and ventriculo-peritoneal drain related infections in preterm infants and young children. Clin Microbiol Infect 6:202–206

    Article  Google Scholar 

  7. Carmel PW, Albright L, Adelson D, Canady A, Black P, Boydston W et al (1999) Incidence and management of subdural hematoma/hygroma with variable- and fixed-pressure differential valves: a randomized, controlled study of programmable compared with conventional valves. Neurosurg Focus 7(4): article 7

    Google Scholar 

  8. Ceddia A, Di Rocco C, Iannelli A, Lauretti L (1992) Idrocefalo neonatale ad eziologia non tumorale. Risultati del trattamento chirurgico nel primo mese di vita. Minerva Pediatr 44:445–450

    PubMed  CAS  Google Scholar 

  9. Czosnyka Z, Czosnyka M, Coperman J, Pickard JD (2000) A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus (letter). Neurosurgery 47:1250–1251

    Article  PubMed  CAS  Google Scholar 

  10. Czosnyka Z, Czosnyka M, Richards HK, Pickard JD (1998) Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro. Neurosurgery 42:327–334

    Article  PubMed  CAS  Google Scholar 

  11. Di Rocco C, Marchese E, Velardi F (1994) A survey of the first complication of newly implanted CSF shunt devices for the treatment of nontumoral hydrocephalus: cooperative survey of the 1991–1992 Education Committee of the ISPN. Childs Nerv Syst 10:321–327

    Article  PubMed  Google Scholar 

  12. Di Rocco C, Massimi L, Tamburrini G (2006) Shunts vs endoscopic third ventriculostomy in infants: are there different types and/or rates of complications. A review. Childs Nerv Syst 22:1573–1589

    Article  PubMed  Google Scholar 

  13. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J Jr et al (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–305

    Article  PubMed  CAS  Google Scholar 

  14. Eymann R, Steudel WI, Kiefer M (2007) Pediatric gravitational shunts: initial results from a prospective study. J Neurosurg (s Suppl Pediatrics) 106:179–184

    Article  Google Scholar 

  15. Frim DM, Lahtrop D (2000) Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman–Medos programmable shunt valve. Pediatr Neurosurg 33:237–242

    Article  PubMed  CAS  Google Scholar 

  16. Hamid NA, Sgouros S (2005) The use of an adjustable valve to treat overdrainage of a cyst-peritoneal shunt in a child with a large sylvian fissure arachnoid cyst. Childs Nerv Syst 21:991–994

    Article  PubMed  CAS  Google Scholar 

  17. Inoue T, Kuzu Y, Ogasawara K, Ogawa A (2005) Effect of 3-Tesla magnetic resonance imaging on various pressure programmable shunt valves. J Neurosurg (Pediatrics 2) 103:163–165

    Google Scholar 

  18. Jandial R, Aryan HE, Hughes S, Levy ML (2004) Effect of vagus nerve stimulator magnet on programmable shunt settings. Neurosurgery 55:627–630

    Article  PubMed  Google Scholar 

  19. Kamiryo, T, Fujii I, Kusaka M, Kashinagi S, Ito H (1991) Intracranial pressure monitoring using a programmable pressure valve and a telemetric intracranial pressure sensor in a case of slit ventricle syndrome after multiple shunt revisions. Childs Nerv Syst 7:233–234

    Article  PubMed  CAS  Google Scholar 

  20. Kestle JRW, Walker ML, for the Strata investigators (2005) A multicenter prospective cohort study of the Strata valve for the management of hydrocephalus in pediatric patients. J Neurosurg (Pediatrics 2) 102:141–145

    Google Scholar 

  21. Kondageski C, Thompson D, Reynolds M, Hayward RD (2007) Experience with the Strata valva in the management of shunt overdrainage. J Neurosurg (2 Suppl Pediatr) 106:95–102

    Article  Google Scholar 

  22. Korinth MC, Weinzierl MR, Gilsbach JM (2003) Experience with a new concept to lower non-infectious complications in infants with programmable shunts. Eur J Pediatr Surg 13:81–86

    Article  PubMed  CAS  Google Scholar 

  23. Liptak GS, McDonald JV (1985/86) Ventriculoperitoneal shunts in children: factors affecting shunt survival. Pediatr Neurosci 12:289–293

    Article  Google Scholar 

  24. Lüdemann W, Rosahl SK, Kaminsky J, Samii M (2005) Reliability of a new adjustable shunt device without the need of readjustment following 3-Tesla MRI. Childs Nerv Syst 21:227–229

    Article  PubMed  Google Scholar 

  25. Lumenta CB, Skotarczak U (1995) Long-term follow-up in 233 patients with congenital hydrocephalus. Childs Nerv Syst 11:173–175

    Article  PubMed  CAS  Google Scholar 

  26. Lumenta CB, Roosen N, Dietrich W (1994) Clinical experience with a pressure adjustable Sophy valve in the management of hydrocephalus. Childs Nerv Syst 6:270–274

    Article  Google Scholar 

  27. Mangano FT, Menendez JA, Habrock T, Narayan P, Leonard JR, Park TS et al (2005) Early programmable valve malfunctions in pediatric hydrocephalus. J Neurosurg 103(6 Suppl Pediatrics):501–507

    PubMed  Google Scholar 

  28. McGirt MJ, Back DW II, Sciubba D, Woodworth GF, Carson B, Weingart J et al (2007) Adjustable vs set-pressure valves decrease the risk of proximal shunt obstruction in the treatment of pediatric hydrocephalus. Childs Nerv Syst 23:289–295

    Article  PubMed  Google Scholar 

  29. Miwa K, Kondo H, Sakai N (2001) Pressure changes observed in the Codman–Medos programmable valves following magnetic exposure and filliping. Childs Nerv Syst 17:150–153

    Article  PubMed  CAS  Google Scholar 

  30. Nomura S, Fujisawa H, Suzuki M (2005) Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves. Surg Neurol 63:467–468

    Article  PubMed  Google Scholar 

  31. Oi S, Matsumoto S (1989) Hydrocephalus in premature infants. Characteristics and therapeutic problems. Childs Nerv Syst 5:76–82

    Article  PubMed  CAS  Google Scholar 

  32. Ortler M, Kostron H, Felber S (1997) Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex-vivo examination of the Codman–Medos programmable valve and the Sophy adjustable pressure valve. Neurosurgery 40:1050–1058

    Article  PubMed  CAS  Google Scholar 

  33. Peña C, Bowsher K, Samuels-Reid J (2004) FDA-approved neurologic devices intended for use in infants, children and adolescents. Neurology 63:1163–1167

    PubMed  Google Scholar 

  34. Pezzotta S, Locatelli D, Bonfanti N, Sfogliarini R, Bruschi L, Rondini G (1987) Shunt in high-risk newborns. Childs Nerv Syst 3:114–116

    Article  PubMed  CAS  Google Scholar 

  35. Pollack I, Albright A, Adelson P, The Hakim-Medos Investigator Group (1999) A randomized controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim–Medos Investigator Group. Neurosurgery 45:1399–1411

    Article  PubMed  CAS  Google Scholar 

  36. Reinprecht A, Dietrich W, Bertalanffy A, Czech T (1995) The Medos–Hakim programmable valve in the treatment of pediatric hydrocephalus. Childs Nerv Syst 13:588–594

    Article  Google Scholar 

  37. Ringel F, Schramm J, Meyer B (2005) Comparison of programmable shunt valves vs. standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients. Surg Neurol 63:36–41

    Article  PubMed  Google Scholar 

  38. Robinson S, Kaufman BA, Park TS (2002) Outcome analysis of initial neonatal shunts: does the valve make a difference? Pediatr Neurosurg 37:287–294

    Article  PubMed  Google Scholar 

  39. Rohde V, Mayfrank L, Ramakers VTh, Gilsbach JM (1998) Four-year experience with the routine use of a programmable Hakim valve in the management of children with hydrocephalus. Acta Neurochir (Wien) 140:1127–1134

    Article  CAS  Google Scholar 

  40. Rohde V, Weinzzierl M, Mayfrank L, Gilsbach JM (2002) Postshunt insertion CSF leaks in infants treated by an adjustable valve opening pressure reduction. Childs Nerv Syst 18:702–704

    Article  PubMed  Google Scholar 

  41. Sato K, Shimizu S, Utsuki S, Suzuki S, Oka H, Fujii K (2006) Disparity between adjusted and actual opening cerebrospinal fluid pressure in a patient with the Codman–Hakim programmable valve: occult form of shunt failure due to head banging. Case report. J Neurosurg (5 Suppl Pediatrics) 105:425–427

    Article  Google Scholar 

  42. Schneider T, Knauff U, Nitsch J, Firsching R (2002) Electromagnetic field hazards involving adjustable shunt valves in hydrocephalus. J Neurosurg 96:331–334

    PubMed  Google Scholar 

  43. Shimizu S, Utsuki S, Suzuki S, Oka H, Fujii K (2005) Obstruction of a Codman–Hakim programmable valve by a migrating pressure control cam. J Neurosurg (Pediatrics 3) 103:270–271

    Google Scholar 

  44. Sutcliffe JC, Battersby RDE (1992) Do we need variable pressure shunts. Br J Neurosurg 6:67–70

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi Y (2001) Withdrawal of shunt systems—clinical use of the programmable shunt system and its effect on hydrocephalus in children. Childs Nerv Syst 17:472–477

    Article  PubMed  CAS  Google Scholar 

  46. Tuli S, Drake J, Lawless J, Wigg M, Lamberti-Pasculli M (2000) Risk factors for repeated cerebrospinal shunt failures in pediatric patients with hydrocephalus. J Neurosurg 92:31–38

    PubMed  CAS  Google Scholar 

  47. Utsuki S, Shimizu S, Oka H, Suzuki S, Fujii K (2006) Alterations of the pressure setting of a Codman–Hakim programmable valve by a television. Case report. Neurol Med Chir (Tokyo) 46:405–407

    Article  Google Scholar 

  48. Warf BC (2005) Comparison of 1 year outcomes for the Chhabra and Codman–Hakim micro precision shunt systems in Uganda: a prospective study in 195 children. J Neurosurg (Pediatrics 4) 102:358–362

    Google Scholar 

  49. Yamashita N, Kamiya K, Yamada K (1999) Experience with a programmable valve shunt system. J Neurosurg 91:26–31

    PubMed  CAS  Google Scholar 

  50. Zemark G, Bellner J, Siesjö P, Strömblad LG, Romner B (2003) Clinical experience with the use of a shunt with an adjustable valve in children with hydrocephalus. J Neurosurg 98:471–476

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors state that they do not have financial or other type of interest in any of the valves mentioned in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martínez-Lage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Lage, J.F., Almagro, MJ., del Rincón, I.S. et al. Management of neonatal hydrocephalus: feasibility of use and safety of two programmable (Sophy and Polaris) valves. Childs Nerv Syst 24, 549–556 (2008). https://doi.org/10.1007/s00381-007-0512-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-007-0512-5

Keywords

Navigation