Skip to main content

Advertisement

Log in

The molecular oncology of bilateral high-grade thalamic astrocytomas in children

  • Case-Based Update
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Bilateral thalamic astrocytomas in children are exceedingly rare. These highly malignant tumors seldom respond to conventional treatment strategies and carry a grim prognosis for patients. However, recent advances in molecular oncology have had a positive impact on prognostication and treatment strategies of these tumors.

Case-based review

We present a new case of WHO grade III bilateral thalamic astrocytoma in a child and review the pathophysiology, molecular oncogenesis, and relevant treatment strategies for this rare disease.

Conclusions

High-grade thalamic astrocytomas affecting both thalami pose a challenge to pediatric neurosurgeons, neuro-oncologists, and neuropathologists given the lack of effective treatment strategies. Understanding recent revelations in the field of molecular oncology can assist clinicians in adequately formulating a treatment plan in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Di Rocco C, Iannelli A (2002) Bilateral thalamic tumors in children. Childs Nerv Syst 18:440–444. https://doi.org/10.1007/s00381-002-0609-9

    Article  PubMed  Google Scholar 

  2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  3. Cheng Y, Ng HK, Zhang SF, Ding M, Pang JCS, Zheng J, Poon WS (1999) Genetic alterations in pediatric high-grade astrocytomas. Hum Pathol 30:1284–1290

    Article  CAS  Google Scholar 

  4. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T (2013) H3F3A K27M mutation in pediatric CNS tumors: a marker for diffuse high-grade astrocytomas. Am J Clin Pathol 139:345–349. https://doi.org/10.1309/AJCPABOHBC33FVMO

    Article  CAS  PubMed  Google Scholar 

  5. Rizzo D, Ruggiero A, Martini M, Rizzo V, Maurizi P, Riccardi R (2015) Molecular biology in pediatric high-grade glioma: impact on prognosis and treatment. Biomed Res Int 2015:215135–215110. https://doi.org/10.1155/2015/215135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cinalli G, Aguirre DT, Mirone G, Ruggiero C, Cascone D, Quaglietta L, Aliberti F, Santi S’, Buonocore MC, Nastro A, Spennato P (2018) Surgical treatment of thalamic tumors in children. J Neurosurg Pediatr 21:247–257. https://doi.org/10.3171/2017.7.Peds16463

    Article  PubMed  Google Scholar 

  7. Esteve F et al (1999) MR spectroscopy of bilateral thalamic gliomas. AJNR Am J Neuroradiol 20:876–881

    CAS  PubMed  Google Scholar 

  8. Gupta A, Shaller N, McFadden KA (2017) Pediatric thalamic gliomas: an updated review. Arch Pathol Lab Med 141:1316–1323. https://doi.org/10.5858/arpa.2017-0249-RA

    Article  CAS  PubMed  Google Scholar 

  9. Schwartzentruber J, Korshunov A, Liu XY, Jones DTW, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DAK, Tönjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jäger N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Frühwald MC, Roggendorf W, Kramm C, Dürken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. https://doi.org/10.1038/nature10833

    Article  CAS  PubMed  Google Scholar 

  10. Wu G, Broniscer A, McEachron T, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M, Zhang J, Gajjar A, Dyer MA, Mullighan CG, Gilbertson RJ, Mardis ER, Wilson RK, Downing JR, Ellison DW, Zhang J, Baker SJ, St. Jude Children's Research Hospital–Washington University Pediatric Cancer Genome Project (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253. https://doi.org/10.1038/ng.1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mackay A et al (2017) Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520–537 e525. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Broniscer A, Hwang SN, Chamdine O, Lin T, Pounds S, Onar-Thomas A, Chi L, Shurtleff S, Allen S, Gajjar A, Northcott P, Orr BA (2018) Bithalamic gliomas may be molecularly distinct from their unilateral high-grade counterparts. Brain Pathol 28:112–120. https://doi.org/10.1111/bpa.12484

    Article  CAS  PubMed  Google Scholar 

  13. Korshunov A, Schrimpf D, Ryzhova M, Sturm D, Chavez L, Hovestadt V, Sharma T, Habel A, Burford A, Jones C, Zheludkova O, Kumirova E, Kramm CM, Golanov A, Capper D, von Deimling A, Pfister SM, Jones DTW (2017) H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathol 134:507–516. https://doi.org/10.1007/s00401-017-1710-1

    Article  CAS  PubMed  Google Scholar 

  14. Castel D, Philippe C, Calmon R, le Dret L, Truffaux N, Boddaert N, Pagès M, Taylor KR, Saulnier P, Lacroix L, Mackay A, Jones C, Sainte-Rose C, Blauwblomme T, Andreiuolo F, Puget S, Grill J, Varlet P, Debily MA (2015) Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 130:815–827. https://doi.org/10.1007/s00401-015-1478-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abedalthagafi M, Phillips JJ, Kim GE, Mueller S, Haas-Kogen DA, Marshall RE, Croul SE, Santi MR, Cheng J, Zhou S, Sullivan LM, Martinez-Lage M, Judkins AR, Perry A (2013) The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod Pathol 26:1425–1432. https://doi.org/10.1038/modpathol.2013.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiestler B, Capper D, Holland-Letz T, Korshunov A, von Deimling A, Pfister SM, Platten M, Weller M, Wick W (2013) ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 126:443–451. https://doi.org/10.1007/s00401-013-1156-z

    Article  CAS  PubMed  Google Scholar 

  17. Durant ST (2012) Telomerase-independent paths to immortality in predictable cancer subtypes. J Cancer 3:67–82. https://doi.org/10.7150/jca.3965

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nguyen DN, Heaphy CM, de Wilde RF, Orr BA, Odia Y, Eberhart CG, Meeker AK, Rodriguez FJ (2013) Molecular and morphologic correlates of the alternative lengthening of telomeres phenotype in high-grade astrocytomas. Brain Pathol 23:237–243. https://doi.org/10.1111/j.1750-3639.2012.00630.x

    Article  PubMed  Google Scholar 

  19. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. https://doi.org/10.1101/gad.1653708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paugh BS, Zhu X, Qu C, Endersby R, Diaz AK, Zhang J, Bax DA, Carvalho D, Reis RM, Onar-Thomas A, Broniscer A, Wetmore C, Zhang J, Jones C, Ellison DW, Baker SJ (2013) Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res 73:6219–6229. https://doi.org/10.1158/0008-5472.CAN-13-1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, Li Y, Zhu X, Qu C, Chen X, Zhang J, Easton J, Edmonson M, Ma X, Lu C, Nagahawatte P, Hedlund E, Rusch M, Pounds S, Lin T, Onar-Thomas A, Huether R, Kriwacki R, Parker M, Gupta P, Becksfort J, Wei L, Mulder HL, Boggs K, Vadodaria B, Yergeau D, Russell JC, Ochoa K, Fulton RS, Fulton LL, Jones C, Boop FA, Broniscer A, Wetmore C, Gajjar A, Ding L, Mardis ER, Wilson RK, Taylor MR, Downing JR, Ellison DW, Zhang J, Baker SJ (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450. https://doi.org/10.1038/ng.2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koschmann C et al (2016) Characterizing and targeting PDGFRA alterations in pediatric high-grade glioma. Oncotarget 7:65696–65706. https://doi.org/10.18632/oncotarget.11602

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parrales A, Iwakuma T (2015) Targeting oncogenic mutant p53 for cancer therapy. Front Oncol 5:288. https://doi.org/10.3389/fonc.2015.00288

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pollack IF, Finkelstein SD, Woods J, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Boyett JM, Finlay JL, Sposto R (2002) Expression of p53 and prognosis in children with malignant gliomas. N Engl J Med 346:420–427. https://doi.org/10.1056/NEJMoa012224

    Article  CAS  PubMed  Google Scholar 

  25. Donson AM, Addo-Yobo SO, Handler MH, Gore L, Foreman NK (2007) MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatr Blood Cancer 48:403–407. https://doi.org/10.1002/pbc.20803

    Article  PubMed  Google Scholar 

  26. Srivastava A, Jain A, Jha P, Suri V, Sharma MC, Mallick S, Puri T, Gupta DK, Gupta A, Sarkar C (2010) MGMT gene promoter methylation in pediatric glioblastomas. Childs Nerv Syst 26:1613–1618. https://doi.org/10.1007/s00381-010-1214-y

    Article  PubMed  Google Scholar 

  27. Carter DJ, Wiedmeyer DA, Antuono PG, Ho KC (1989) Correlation of computed tomography and postmortem findings of a diffuse astrocytoma: a case report. Comput Med Imaging Graph 13:491–494

    Article  CAS  Google Scholar 

  28. Bilginer B, Narin F, Işıkay I, Oguz KK, Söylemezoglu F, Akalan N (2014) Thalamic tumors in children. Childs Nerv Syst 30:1493–1498. https://doi.org/10.1007/s00381-014-2420-9

    Article  PubMed  Google Scholar 

  29. Kramm CM, Butenhoff S, Rausche U, Warmuth-Metz M, Kortmann RD, Pietsch T, Gnekow A, Jorch N, Janssen G, Berthold F, Wolff JE (2011) Thalamic high-grade gliomas in children: a distinct clinical subset? Neuro-Oncology 13:680–689. https://doi.org/10.1093/neuonc/nor045

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kann BH, Park HS, Lester-Coll NH, Yeboa DN, Benitez V, Khan AJ, Bindra RS, Marks AM, Roberts KB (2016) Postoperative radiotherapy patterns of care and survival implications for medulloblastoma in young children. JAMA Oncol 2:1574–1581. https://doi.org/10.1001/jamaoncol.2016.2547

    Article  PubMed  Google Scholar 

  31. Grill J, Massimino M, Bouffet E, Azizi AA, McCowage G, Cañete A, Saran F, le Deley MC, Varlet P, Morgan PS, Jaspan T, Jones C, Giangaspero F, Smith H, Garcia J, Elze MC, Rousseau RF, Abrey L, Hargrave D, Vassal G (2018) Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol 36:951–958. https://doi.org/10.1200/JCO.2017.76.0611

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Goodarzi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, A., Garza, N., Lechpammer, M. et al. The molecular oncology of bilateral high-grade thalamic astrocytomas in children. Childs Nerv Syst 35, 2047–2054 (2019). https://doi.org/10.1007/s00381-019-04372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-019-04372-0

Keywords

Navigation