Skip to main content

Advertisement

Log in

Novel loss of function mutation in KRIT1/CCM1 is associated with distinctly progressive cerebral and spinal cavernous malformations after radiochemotherapy for intracranial malignant germ cell tumor

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Cerebrospinal cavernous malformations (CCMs) are vascular lesions characterized by dilated and leaky capillary caverns. CCMs can cause seizures, focal neurological deficits or acute intracranial hemorrhage; however, most patients are asymptomatic. CCMs occur either sporadically or as a familial autosomal-dominant disorder. We present a clinical and molecular study of a patient with distinctive cerebral and spinal cavernous malformations following radiochemotherapy for a malignant brain tumor.

Methods

The patient had multiple magnet resonance imaging (MRI) examinations of his brain and spine following radiochemotherapy for a primary intracranial germ cell tumor (GCT), as part of his oncologic follow-up. The MRI sequences included susceptibility-weighted imaging (SWI). The coding exons and their flanking intronic regions of KRIT1/CCM1 gene were analyzed for mutations by polymerase chain reaction (PCR) and direct sequencing.

Results

MRI revealed numerous cerebral and spinal microhemorrhages and pronounced cavernous malformations that progressed with subsequent follow-up imaging. Genetic analysis demonstrated a novel heterozygous KRIT1/CCM1 two base pair deletion (c.1535_1536delTG) in exon 14. This deletion leads to a frameshift with a premature stop codon at nucleotide position 1553 and a highly likely loss of function of the KRIT1 protein.

Conclusion

We describe a patient with a novel heterozygous germ line loss of function mutation in KRIT1, which is associated with rapid-onset and highly progressive CCMs after radiochemotherapy for a malignant brain tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akers AL, Johnson E, Steinberg GK, Zabramski JM, Marchuk DA (2009) Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. Hum Mol Genet 18:919–930. doi:10.1093/hmg/ddn430

    Article  CAS  PubMed  Google Scholar 

  2. Allen JC, Miller DC, Budzilovich GN, Epstein FJ (1991) Brain and spinal cord hemorrhage in long-term survivors of malignant pediatric brain tumors: a possible late effect of therapy. Neurology 41:148–150

    Article  CAS  PubMed  Google Scholar 

  3. Arrieta O, Michel Ortega RM, Angeles-Sanchez J, Villarreal-Garza C, Aviles-Salas A, Chanona-Vilchis JG, Arechaga-Ocampo E, Luevano-Gonzalez A, Jimenez MA, Aguilar JL (2009) Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors. Journal of experimental & clinical cancer research : CR 28:120. doi:10.1186/1756-9966-28-120

    Article  PubMed Central  Google Scholar 

  4. Azzam EI, Jay-Gerin JP, Pain D (2012) Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett 327:48–60. doi:10.1016/j.canlet.2011.12.012

    Article  CAS  PubMed  Google Scholar 

  5. Batra S, Lin D, Recinos PF, Zhang J, Rigamonti D (2009) Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol 5:659–670. doi:10.1038/nrneurol.2009.177

    Article  PubMed  Google Scholar 

  6. Baumgartner JE, Ater JL, Ha CS, Kuttesch JF, Leeds NE, Fuller GN, Wilson RJ (2003) Pathologically proven cavernous angiomas of the brain following radiation therapy for pediatric brain tumors. Pediatr Neurosurg 39:201–207 doi:72472

    Article  PubMed  Google Scholar 

  7. Bulut HT, Sarica MA, Baykan AH (2014) The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med 7:5296–5302

    PubMed  PubMed Central  Google Scholar 

  8. Calaminus G, Kortmann R, Worch J, Nicholson JC, Alapetite C, Garre ML, Patte C, Ricardi U, Saran F, Frappaz D (2013) SIOP CNS GCT 96: final report of outcome of a prospective, multinational nonrandomized trial for children and adults with intracranial germinoma, comparing craniospinal irradiation alone with chemotherapy followed by focal primary site irradiation for patients with localized disease. Neuro-Oncology 15:788–796. doi:10.1093/neuonc/not019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cave-Riant F, Denier C, Labauge P, Cecillon M, Maciazek J, Joutel A, Laberge-Le Couteulx S, Tournier-Lasserve E (2002) Spectrum and expression analysis of KRIT1 mutations in 121 consecutive and unrelated patients with cerebral cavernous malformations. European journal of human genetics : EJHG 10:733–740. doi:10.1038/sj.ejhg.5200870

    Article  CAS  PubMed  Google Scholar 

  10. Chishti AH, Kim AC, Marfatia SM, Lutchman M, Hanspal M, Jindal H, Liu SC, Low PS, Rouleau GA, Mohandas N, Chasis JA, Conboy JG, Gascard P, Takakuwa Y, Huang SC, Benz EJ Jr, Bretscher A, Fehon RG, Gusella JF, Ramesh V, Solomon F, Marchesi VT, Tsukita S, Tsukita S, Hoover KB et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282

    Article  CAS  PubMed  Google Scholar 

  11. Choquet H, Pawlikowska L, Lawton MT, Kim H (2015) Genetics of cerebral cavernous malformations: current status and future prospects. J Neurosurg Sci 59:211–220

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clatterbuck RE, Elmaci I, Rigamonti D (2001) The nature and fate of punctate (type IV) cavernous malformations. Neurosurgery 49:26–30 discussion 30-22

    CAS  PubMed  Google Scholar 

  13. Cutsforth-Gregory JK, Lanzino G, Link MJ, Brown RD Jr, Flemming KD (2015) Characterization of radiation-induced cavernous malformations and comparison with a nonradiation cavernous malformation cohort. J Neurosurg 122:1214–1222. doi:10.3171/2015.1.JNS141452

    Article  PubMed  Google Scholar 

  14. Denier C, Labauge P, Bergametti F, Marchelli F, Riant F, Arnoult M, Maciazek J, Vicaut E, Brunereau L, Tournier-Lasserve E (2006) Genotype-phenotype correlations in cerebral cavernous malformations patients. Ann Neurol 60:550–556. doi:10.1002/ana.20947

    Article  PubMed  Google Scholar 

  15. DiStefano PV, Kuebel JM, Sarelius IH, Glading AJ (2014) KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling. J Biol Chem 289:33054–33065. doi:10.1074/jbc.M114.582304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fischer A, Zalvide J, Faurobert E, Albiges-Rizo C, Tournier-Lasserve E (2013) Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol Med 19:302–308. doi:10.1016/j.molmed.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  17. Francalanci F, Avolio M, De Luca E, Longo D, Menchise V, Guazzi P, Sgro F, Marino M, Goitre L, Balzac F, Trabalzini L, Retta SF (2009) Structural and functional differences between KRIT1A and KRIT1B isoforms: a framework for understanding CCM pathogenesis. Exp Cell Res 315:285–303. doi:10.1016/j.yexcr.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  18. Gastelum E, Sear K, Hills N, Roddy E, Randazzo D, Chettout N, Hess C, Cotter J, Haas-Kogan DA, Fullerton H, Mueller S (2015) Rates and characteristics of radiographically detected intracerebral cavernous malformations after cranial radiation therapy in pediatric cancer patients. J Child Neurol 30:842–849. doi:10.1177/0883073814544364

    Article  PubMed  Google Scholar 

  19. Gault J, Shenkar R, Recksiek P, Awad IA (2005) Biallelic somatic and germ line CCM1 truncating mutations in a cerebral cavernous malformation lesion. Stroke 36:872–874. doi:10.1161/01.STR.0000157586.20479.fd

    Article  PubMed  Google Scholar 

  20. Glading A, Han J, Stockton RA, Ginsberg MH (2007) KRIT-1/CCM1 is a Rap1 effector that regulates endothelial cell cell junctions. J Cell Biol 179:247–254. doi:10.1083/jcb.200705175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF (2014) KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 68:134–147. doi:10.1016/j.freeradbiomed.2013.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Golden M, Saeidi S, Liem B, Marchand E, Morrison L, Hart B (2015) Sensitivity of patients with familial cerebral cavernous malformations to therapeutic radiation. Journal of medical imaging and radiation oncology 59:134–136. doi:10.1111/1754-9485.12269

    Article  PubMed  PubMed Central  Google Scholar 

  23. Greenfield JG, Love S, Budka H, Perry A (2015) Greenfield's neuropathology, Ninth edn. CRC Press, London

    Google Scholar 

  24. Guzeloglu-Kayisli O, Kayisli UA, Amankulor NM, Voorhees JR, Gokce O, DiLuna ML, Laurans MS, Luleci G, Gunel M (2004) Krev1 interaction trapped-1/cerebral cavernous malformation-1 protein expression during early angiogenesis. J Neurosurg 100:481–487. doi:10.3171/ped.2004.100.5.0481

    CAS  PubMed  Google Scholar 

  25. Heckl S, Aschoff A, Kunze S (2002) Radiation-induced cavernous hemangiomas of the brain: a late effect predominantly in children. Cancer 94:3285–3291. doi:10.1002/cncr.10596

    Article  PubMed  Google Scholar 

  26. Jain R, Robertson PL, Gandhi D, Gujar SK, Muraszko KM, Gebarski S (2005) Radiation-induced cavernomas of the brain. AJNR Am J Neuroradiol 26:1158–1162

    PubMed  Google Scholar 

  27. Keezer MR, Del Maestro R (2009) Radiation-induced cavernous hemangiomas: case report and literature review. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques 36:303–310

    Article  PubMed  Google Scholar 

  28. Kleinschmidt-DeMasters B, Rodríguez FJ, Tihan T (2016) Diagnostic pathology. neuropathology, Second edn. Elsevier, Philadelphia

    Google Scholar 

  29. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koike S, Aida N, Hata M, Fujita K, Ozawa Y, Inoue T (2004) Asymptomatic radiation-induced telangiectasia in children after cranial irradiation: frequency, latency, and dose relation. Radiology 230:93–99. doi:10.1148/radiol.2301021143

    Article  PubMed  Google Scholar 

  31. Labauge P, Denier C, Bergametti F, Tournier-Lasserve E (2007) Genetics of cavernous angiomas. Lancet Neurol 6:237–244. doi:10.1016/S1474-4422(07)70053-4

    Article  CAS  PubMed  Google Scholar 

  32. Laberge-le Couteulx S, Jung HH, Labauge P, Houtteville JP, Lescoat C, Cecillon M, Marechal E, Joutel A, Bach JF, Tournier-Lasserve E (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193. doi:10.1038/13815

    Article  CAS  PubMed  Google Scholar 

  33. Larson JJ, Ball WS, Bove KE, Crone KR, Tew JM Jr (1998) Formation of intracerebral cavernous malformations after radiation treatment for central nervous system neoplasia in children. J Neurosurg 88:51–56. doi:10.3171/jns.1998.88.1.0051

    Article  CAS  PubMed  Google Scholar 

  34. Li L, Mugikura S, Kumabe T, Murata T, Mori E, Takase K, Jingu K, Takahashi S (2015) A comparative study of the extent of cerebral microvascular injury following whole-brain irradiation versus reduced-field irradiation in long-term survivors of intracranial germ cell tumors. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology 117:302–307. doi:10.1016/j.radonc.2015.09.017

    Article  Google Scholar 

  35. Liu C, Li W, Tong KA, Yeom KW, Kuzminski S (2015) Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. Journal of magnetic resonance imaging : JMRI 42:23–41. doi:10.1002/jmri.24768

    Article  PubMed  Google Scholar 

  36. McDonald DA, Shi C, Shenkar R, Gallione CJ, Akers AL, Li S, De Castro N, Berg MJ, Corcoran DL, Awad IA, Marchuk DA (2014) Lesions from patients with sporadic cerebral cavernous malformations harbor somatic mutations in the CCM genes: evidence for a common biochemical pathway for CCM pathogenesis. Hum Mol Genet 23:4357–4370. doi:10.1093/hmg/ddu153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morris B, Partap S, Yeom K, Gibbs IC, Fisher PG, King AA (2009) Cerebrovascular disease in childhood cancer survivors: a children's oncology group report. Neurology 73:1906–1913. doi:10.1212/WNL.0b013e3181c17ea8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pagenstecher A, Stahl S, Sure U, Felbor U (2009) A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells. Hum Mol Genet 18:911–918. doi:10.1093/hmg/ddn420

    Article  CAS  PubMed  Google Scholar 

  39. Passos J, Nzwalo H, Marques J, Azevedo A, Netto E, Nunes S, Salgado D (2015) Late cerebrovascular complications after radiotherapy for childhood primary central nervous system tumors. Pediatr Neurol 53:211–215. doi:10.1016/j.pediatrneurol.2015.05.015

    Article  PubMed  Google Scholar 

  40. Perry A, Brat DJ (2010) Practical surgical neuropathology : a diagnostic approach. Pattern recognition series. Churchill Livingstone/Elsevier, Philadelphia.

  41. Peters S, Pahl R, Claviez A, Jansen O (2013) Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children. Neuroradiology 55:853–859. doi:10.1007/s00234-013-1185-2

    Article  CAS  PubMed  Google Scholar 

  42. Plummer NW, Gallione CJ, Srinivasan S, Zawistowski JS, Louis DN, Marchuk DA (2004) Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. Am J Pathol 165:1509–1518. doi:10.1016/S0002-9440(10)63409-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Raychaudhuri R, Batjer HH, Awad IA (2005) Intracranial cavernous angioma: a practical review of clinical and biological aspects. Surg Neurol 63:319–328; discussion 328. doi:10.1016/j.surneu.2004.05.032

    Article  PubMed  Google Scholar 

  44. Reisinger K, Baal N, McKinnon T, Munstedt K, Zygmunt M (2007) The gonadotropins: tissue-specific angiogenic factors? Mol Cell Endocrinol 269:65–80. doi:10.1016/j.mce.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  45. Retta SF, Glading AJ (2016) Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: two sides of the same coin. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2016.09.011

    PubMed  PubMed Central  Google Scholar 

  46. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277:1070–1075. doi:10.1111/j.1742-4658.2009.07535.x

    Article  CAS  PubMed  Google Scholar 

  47. Rigamonti D, Drayer BP, Johnson PC, Hadley MN, Zabramski J, Spetzler RF (1987) The MRI appearance of cavernous malformations (angiomas). J Neurosurg 67:518–524. doi:10.3171/jns.1987.67.4.0518

    Article  CAS  PubMed  Google Scholar 

  48. Robbins ME, Zhao W (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80:251–259. doi:10.1080/09553000410001692726

    Article  CAS  PubMed  Google Scholar 

  49. Robinson JR, Awad IA, Little JR (1991) Natural history of the cavernous angioma. J Neurosurg 75:709–714. doi:10.3171/jns.1991.75.5.0709

    Article  CAS  PubMed  Google Scholar 

  50. Serebriiskii I, Estojak J, Sonoda G, Testa JR, Golemis EA (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene 15:1043–1049. doi:10.1038/sj.onc.1201268

    Article  CAS  PubMed  Google Scholar 

  51. Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG, Moser A, Urban C (2008) Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft 184:276–280. doi:10.1007/s00066-008-1817-3

    Article  Google Scholar 

  52. Verlaan DJ, Davenport WJ, Stefan H, Sure U, Siegel AM, Rouleau GA (2002) Cerebral cavernous malformations: mutations in Krit1. Neurology 58:853–857

    Article  CAS  PubMed  Google Scholar 

  53. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A (2010) Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proc Natl Acad Sci U S A 107:12640–12645. doi:10.1073/pnas.1000132107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zabramski JM, Henn JS, Coons S (1999) Pathology of cerebral vascular malformations. Neurosurg Clin N Am 10:395–410

    CAS  PubMed  Google Scholar 

  55. Zabramski JM, Wascher TM, Spetzler RF, Johnson B, Golfinos J, Drayer BP, Brown B, Rigamonti D, Brown G (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432. doi:10.3171/jns.1994.80.3.0422

    Article  CAS  PubMed  Google Scholar 

  56. Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11:389–396

    Article  CAS  PubMed  Google Scholar 

  57. Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, Lang U, Preissner KT (2002) Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab 87:5290–5296. doi:10.1210/jc.2002-020642

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the patient and his family for participating in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Faber.

Ethics declarations

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. 6

CCM presentation in different MRI sequences. Seven years and 4 months after completion of initial radiotherapy, MRI scans through a similar axial level of the brain show various appearances of the CCMs. Comparison of T1-weighted (a), T2-weighted (b, c) and T2*-weighted (d) images highlight the sensitivity of the different signal sequences in detection of CCMs. (GIF 109 kb)

High Resolution (TIFF 12118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Russo, A., Neu, M.A., Theruvath, J. et al. Novel loss of function mutation in KRIT1/CCM1 is associated with distinctly progressive cerebral and spinal cavernous malformations after radiochemotherapy for intracranial malignant germ cell tumor. Childs Nerv Syst 33, 1275–1283 (2017). https://doi.org/10.1007/s00381-017-3434-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3434-x

Keywords

Navigation