Skip to main content
Log in

Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Whole-brain irradiation is part of the therapy protocol for patients with medulloblastomas. Side effects and complications of radiation can be detected by follow-up magnetic resonance imaging (MRI). Susceptibility-weighted images (SWI) can detect even very small amounts of residual blood that cannot be shown with conventional MRI. The purpose of this study was to determine when and where SWI lesions appear after whole-brain irradiation.

Methods

MRI follow-up of seven patients with medulloblastoma who were treated with whole-brain irradiation were analyzed retrospectively. SWI were part of the initial and follow-up MRI protocol. De novo SWI lesions, localization, and development over time were documented.

Results

At time of irradiation, mean age of the patients was 13 years (±4 years). Earliest SWI lesions were detected 4 months after radiation treatment. In all patients, SWI lesions accumulated over time, although the individual number of SWI lesions varied. No specific dissemination of SWI lesions was observed.

Conclusion

Whole-brain irradiation can cause relatively early dot-like SWI lesions. The lesions are irreversible and accumulate over time. Histopathological correlation and clinical impact of these SWI lesions should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SWI:

Susceptibility weighted imaging

WHO:

World Health Organization

References

  1. Frühwald MC, Rutkowski S (2011) Tumors of the central nervous system in children and adolescents. Dtsch Arztebl 108(22):390–397

    Google Scholar 

  2. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LAG, Eheman C et al (2011) Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736

    Article  PubMed  Google Scholar 

  3. Kortmann RD, Kühl J, Timmermann B, Mittler U, Urban C, Budach V et al (2000) Postoperative neoadjuvant chemotherapy before radiotherapy as compared to immediate radiotherapy followed by maintenance chemotherapy in the treatment of medulloblastoma in childhood: results of the German prospective randomized trial HIT ’91. Int J Radiat Oncol Biol Phys 46(2):269–279

    Article  PubMed  CAS  Google Scholar 

  4. Ramaswamy V, Northcott PA, Taylor MD (2011) FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genet 204(11):577–588

    Article  PubMed  CAS  Google Scholar 

  5. Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS (2012) Brain tumors in children—current therapies and newer directions. Indian J Pediatr 79(7):922–927

    Article  PubMed  Google Scholar 

  6. Pollack IF (2011) Multidisciplinary management of childhood brain tumors: a review of outcomes, recent advances, and challenges. J Neurosurg Pediatr 8(2):135–148

    Article  PubMed  Google Scholar 

  7. Rieken S, Mohr A, Habermehl D, Welzel T, Lindel K, Witt O et al (2011) Outcome and prognostic factors of radiation therapy for medulloblastoma. Int J Radiat Oncol Biol Phys 81(3):e7–e13

    Article  PubMed  Google Scholar 

  8. Jakacki RI, Burger PC, Zhou T, Holmes EJ, Kocak M, Onar A et al (2012) Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a children’s oncology group phase I/II study. J Clin Oncol 30(21):2648–2653

    Article  PubMed  CAS  Google Scholar 

  9. Packer RJ, Sutton LN, Elterman R, Lange B, Goldwein J, Nicholson HS et al (1994) Outcome for children with medulloblastoma treated with radiation and cisplatin, CCNU, and vincristine chemotherapy. J Neurosurg 81(5):690–698

    Article  PubMed  CAS  Google Scholar 

  10. Von Hoff K, Hinkes B, Gerber NU, Deinlein F, Mittler U, Urban C et al (2009) Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT’91. Eur J Cancer 45(7):1209–1217

    Article  Google Scholar 

  11. Frange P, Alapetite C, Gaboriaud G, Bours D, Zucker JM, Zerah M et al (2009) From childhood to adulthood: long-term outcome of medulloblastoma patients. The Institut Curie experience (1980–2000). J Neurooncol 95(2):271–279

    Article  PubMed  CAS  Google Scholar 

  12. Vázquez E, Delgado I, Sánchez-Montañez A, Barber I, Sánchez-Toledo J, Enríquez G (2011) Side effects of oncologic therapies in the pediatric central nervous system: update on neuroimaging findings. Radiographics 31(4):1123–1139

    Article  PubMed  Google Scholar 

  13. Lupo JM, Chuang CF, Chang SM, Barani IJ, Jimenez B, Hess CP et al (2012) 7-Tesla susceptibility-weighted imaging to assess the effects of radiotherapy on normal-appearing brain in patients with glioma. Int J Radiat Oncol Biol Phys 82(3):e493–e500

    Article  PubMed  Google Scholar 

  14. Noyce AJ, McCrae S, Gawler J, Evanson J (2010) Teaching neuroimages: microhemorrhages resulting from cranial radiotherapy in childhood. Neurology 75(1):e2–e3

    Article  PubMed  Google Scholar 

  15. Rauscher A, Sedlacik J, Deistung A, Mentzel H-J, Reichenbach JR (2006) Susceptibility weighted imaging: data acquisition, image reconstruction and clinical applications. Z Med Phys 16(4):240–250

    PubMed  Google Scholar 

  16. Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ et al (2006) Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging 24(1):41–51

    Article  PubMed  Google Scholar 

  17. Mittal S, Wu Z, Neelavalli J, Haacke EM (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 30(2):232–252

    Article  PubMed  CAS  Google Scholar 

  18. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR 30(1):19–30

    Article  PubMed  CAS  Google Scholar 

  19. Tsuboyama T, Imaoka I, Shimono T, Nakatsuka T, Ashikaga R, Okuaki T et al (2008) T2*-sensitized high-resolution magnetic resonance venography using 3D-PRESTO technique. Magn Reson Med Sci 7(2):73–77

    Article  PubMed  Google Scholar 

  20. Moonen CT, Liu G, Van Gelderen P, Sobering G (1992) A fast gradient-recalled MRI technique with increased sensitivity to dynamic susceptibility effects. Magn Reson Med 26(1):184–189

    Article  PubMed  CAS  Google Scholar 

  21. Lew SM, Morgan JN, Psaty E, Lefton DR, Allen JC, Abbott R (2006) Cumulative incidence of radiation-induced cavernomas in long-term survivors of medulloblastoma. J Neurosurg 104(2 Suppl):103–107

    PubMed  Google Scholar 

  22. Jain R, Robertson PL, Gandhi D, Gujar SK, Muraszko KM, Gebarski S (2005) Radiation-induced cavernomas of the brain. AJNR Am J Neuroradiol 26(5):1158–1162

    PubMed  Google Scholar 

  23. Vinchon M, Leblond P, Caron S, Delestret I, Baroncini M, Coche B (2011) Radiation-induced tumors in children irradiated for brain tumor: a longitudinal study. Childs Nerv Syst 27(3):445–453

    Article  PubMed  Google Scholar 

  24. Koike S, Aida N, Hata M, Fujita K, Ozawa Y, Inoue T (2004) Asymptomatic radiation-induced telangiectasia in children after cranial irradiation: frequency, latency, and dose relation. Radiology 230(1):93–99

    Article  PubMed  Google Scholar 

  25. Martínez-Lage JF, De la Fuente I, Rosde San Pedro J, Fuster JL, Pérez-Espejo MA, Herrero MT (2008) Cavernomas in children with brain tumors: a late complication of radiotherapy. Neurocirugia (Astur) 19(1):50–54

    Google Scholar 

  26. Nimjee SM, Powers CJ, Bulsara KR (2006) Review of the literature on de novo formation of cavernous malformations of the central nervous system after radiation therapy. Neurosurg Focus 21(1):e4

    Article  PubMed  Google Scholar 

  27. Burn S, Gunny R, Phipps K, Gaze M, Hayward R (2007) Incidence of cavernoma development in children after radiotherapy for brain tumors. J Neurosurg 106(5 Suppl):379–383

    PubMed  Google Scholar 

  28. Furuse M, Miyatake S-I, Kuroiwa T (2005) Cavernous malformation after radiation therapy for astrocytoma in adult patients: report of 2 cases. Acta Neurochir 147(10):1097–1101, discussion 1101

    Article  PubMed  CAS  Google Scholar 

  29. Strenger V, Sovinz P, Lackner H, Dornbusch HJ, Lingitz H, Eder HG et al (2008) Intracerebral cavernous hemangioma after cranial irradiation in childhood. Incidence and risk factors. Strahlenther Onkol 184(5):276–280

    Article  PubMed  Google Scholar 

  30. Baumgartner JE, Ater JL, Ha CS, Kuttesch JF, Leeds NE, Fuller GN et al (2003) Pathologically proven cavernous angiomas of the brain following radiation therapy for pediatric brain tumors. Pediatr Neurosurg 39(4):201–207

    Article  PubMed  Google Scholar 

  31. Washington CW, McCoy KE, Zipfel GJ (2010) Update on the natural history of cavernous malformations and factors predicting aggressive clinical presentation. Neurosurg Focus 29(3):E7

    Article  PubMed  Google Scholar 

  32. Münter MW, Karger CP, Reith W, Schneider HM, Peschke P, Debus J (1999) Delayed vascular injury after single high-dose irradiation in the rat brain: histologic immunohistochemical, and angiographic studies. Radiology 212(2):475–482

    PubMed  Google Scholar 

  33. Kamiryo T, Kassell NF, Thai QA, Lopes MB, Lee KS, Steiner L (1996) Histological changes in the normal rat brain after gamma irradiation. Acta Neurochir 138(4):451–459

    Article  PubMed  CAS  Google Scholar 

  34. Reinhold HS, Hopewell JW (1980) Late changes in the architecture of blood vessels of the rat brain after irradiation. Br J Radiol 53(631):693–696

    Article  PubMed  CAS  Google Scholar 

  35. Hopewell JW, Calvo W, Campling D, Reinhold HS, Rezvani M, Yeung TK (1989) Effects of radiation on the microvasculature. Implications for normal-tissue damage. Front Radiat Ther Oncol 23:85–95

    PubMed  CAS  Google Scholar 

  36. Brown WR, Thore CR, Moody DM, Robbins ME, Wheeler KT (2005) Vascular damage after fractionated whole-brain irradiation in rats. Radiat Res 164(5):662–668

    Article  PubMed  CAS  Google Scholar 

  37. Karger CP, Münter MW, Heiland S, Peschke P, Debus J, Hartmann GH (2002) Dose-response curves and tolerance doses for late functional changes in the normal rat brain after stereotactic radiosurgery evaluated by magnetic resonance imaging: influence of end points and follow-up time. Radiat Res 157(6):617–625

    Article  PubMed  CAS  Google Scholar 

  38. Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB (1994) Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology 193(3):629–636

    PubMed  CAS  Google Scholar 

  39. Poussaint TY, Siffert J, Barnes PD, Pomeroy SL, Goumnerova LC, Anthony DC et al (1995) Hemorrhagic vasculopathy after treatment of central nervous system neoplasia in childhood: diagnosis and follow-up. AJNR 16(4):693–699

    PubMed  CAS  Google Scholar 

  40. Ku H-L, Chi N-F (2011) Cerebral lobar microhemorrhages detection by high magnetic field susceptibility weighted image: a potential diagnostic neuroimage technique of Alzheimer’s disease. Med Hypotheses 76(6):840–842

    Article  PubMed  Google Scholar 

  41. Charidimou A, Jäger HR, Werring DJ (2012) Cerebral microbleed detection and mapping: principles, methodological aspects and rationale in vascular dementia. Exp Gerontol 7(11):843–852

    Article  Google Scholar 

  42. Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C et al (2010) Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 119(3):291–302

    Article  PubMed  Google Scholar 

  43. Werring DJ, Gregoire SM, Cipolotti L (2010) Cerebral microbleeds and vascular cognitive impairment. J Neurol Sci 299(1–2):131–135

    Article  PubMed  Google Scholar 

  44. Poels MMF, Ikram MA, Van der Lugt A, Hofman A, Niessen WJ, Krestin GP et al (2012) Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 78(5):326–333

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peters, S., Pahl, R., Claviez, A. et al. Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children. Neuroradiology 55, 853–859 (2013). https://doi.org/10.1007/s00234-013-1185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-013-1185-2

Keywords

Navigation