Skip to main content

Advertisement

Log in

Intraoperative neurophysiology in posterior fossa tumor surgery in children

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bricolo A (2000) Surgical management of intrinsic brain stem gliomas. Oper Tech Neurosurg 3:137–154

    Article  Google Scholar 

  2. Cochrane DD, Gustavsson B, Poskitt KP, Steinbok P, Kestle JRW (1994) The surgical and natural morbidity of aggressive resection for posterior fossa tumors in childhood. Pediatr Neurosurg 20:19–29

    Article  CAS  PubMed  Google Scholar 

  3. Aarsen FK, Van Dongen H, Paquier PF, Van Mouri M, Catsman-Berrevoets CE (2004) Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 62:1311–1316

    Article  CAS  PubMed  Google Scholar 

  4. Abbott R (1996) Brain stem glioma. In: McLone DG (ed) Pediatric neurosurgery: surgery of the developing nervous system. WB Saunders, Philadelphia, pp 859–867

    Google Scholar 

  5. Abbott R, Shiminski-Maher T, Epstein FJ (1996) Intrinsic tumor of the medulla: predicting outcome after surgery. Pediatr Neurosurg 25:41–44

    Article  CAS  PubMed  Google Scholar 

  6. Abbott R (2009) The use of physiological mapping and monitoring during surgery for ependymomas. Childs Nerv Syst 25:1241–1247

    Article  PubMed  Google Scholar 

  7. Akagami R, Dong CC, Westerberg BD (2005) Localized transcranial electrical motor evoked potentials for monitoring cranial nerves in cranial base surgery. Neurosurgery 57:78–85

    Article  PubMed  Google Scholar 

  8. Armand J, Olivier E, Edgley SA, Lemon RN (1996) The structure and function of the developing intraoperative neurophysiological monitoring in posterior fossa surgery corticospinal tract: some key issues. In: Wing AM, Aggard P, Lanagan JR (eds) Hand and brain. Academic, San Diego, pp 125–145

    Chapter  Google Scholar 

  9. Banoub M, Tetzlaff JE, Schubert A (2003) Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99(3):716–737

    Article  PubMed  Google Scholar 

  10. Blessing W (1997) The lower brainstem and bodily homeostasis. Oxford University Press, New York

    Google Scholar 

  11. Bricolo A, Turazzi S (1995) Surgery for gliomas and other mass lesions of the brainstem. Adv Tech Stand Neurosurg 22:261–341

    Article  CAS  PubMed  Google Scholar 

  12. Burke D, Hicks RG, Stephen JPH (1990) Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. J Physiol 425:283–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Deletis V, Kothbauer K (1998) Intraoperative neurophysiology of the corticospinal tract. In: Stålberg E, Sharma HS, Olsson Y (eds) Spinal cord monitoring. Springer, Vienna, pp 421–444

    Chapter  Google Scholar 

  14. Deletis V, Sala F, Morota N (2000) Intraoperative neurophysiological monitoring and mapping during brain stem surgery: a modern approach. Oper Tech Neurosurg 3(2):109–113

    Article  Google Scholar 

  15. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30(20):2559–2565

    Article  PubMed  Google Scholar 

  16. DiCindio S, Theroux M, Shah S, Miller F, Dabney K, Brislin RP, Schwartz D (2003) Multimodality monitoring of transcranial electric motor and somatosensory-evoked potentials during surgical correction of spinal deformity in patients with cerebral palsy and other neuromuscular disorders. Spine (Phila Pa 1976) 28:1851–1855, discussion 1855–1856

    Article  Google Scholar 

  17. Dong CC, MacDonald DB, Akagami R, Westerberg B, Alkhani A, Kanaan I, Hassounah M (2005) Intraoperative facial motor evoked potential monitoring with transcranial electrical stimulation during skull base surgery. Clin Neurophysiol 116:588–596

    Article  PubMed  Google Scholar 

  18. Due-Tonnessen B, Helseth E, Scheibe D, Skullerud K, Aamondt G, Lundar T (2002) Long term outcome after resection of benign cerebellar astrocytoma in children and young adults (0–19): report of 110 consecutive cases. Pediatr Neurosurg 37:71–80

    Article  PubMed  Google Scholar 

  19. Duffau H, Sichez JP (1998) Intraoperative direct electrical stimulation of the lamina quadrigemina in a case of a deep tectal cavernoma. Acta Neurochir (Wien) 140:1309–1312

    Article  CAS  Google Scholar 

  20. Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985-96) and with (1996-2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76(6):845–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, Kothbauer K (1995) The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery 37:255–265

    Article  CAS  PubMed  Google Scholar 

  22. Epstein FJ, Farmer JP (1993) Brainstem glioma growth patterns. J Neurosurg 78:408–412

    Article  CAS  PubMed  Google Scholar 

  23. Grabb PA, Albright L, Sclabassi RJ, Pollack IF (1997) Continuous intraoperative electromyographic monitoring of cranial nerves during resection of fourth ventricular tumors in children. J Neurosurg 86:1–4

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman HJ, Becker L, Craven MA (1980) A clinically and pathologically distinct group of benign brain stem gliomas. Neurosurgery 7:243–248

    Article  CAS  PubMed  Google Scholar 

  25. Humphreys RP (1982) Posterior cranial fossa brain tumors in children. In: Youmans JR (ed) Neurological surgery. Saunders, Philadelphia, pp 2733–2752

    Google Scholar 

  26. Ishihara H, Bjeljac M, Straumann D, Kaku Y, Roth P, Yonekawa Y (2006) The role of intraoperative monitoring of oculomotor and trochlear nuclei-safe entry zone to tegmental lesions. Minim Invasive Neurosurg 49:168–172

    Article  CAS  PubMed  Google Scholar 

  27. Jallo GI, Biser-Rohrbaugh A, Freed D (2004) Brainstem gliomas. Childs Nerv Syst 20:143–153

    Article  PubMed  Google Scholar 

  28. Jallo GI, Shiminski-Maher T, Velazquez L, Abbott R, Wisoff J, Epstein F (2005) Recovery of lower cranial nerve function after surgery for medullary brainstem tumors. Neurosurgery 56:74–78

    PubMed  Google Scholar 

  29. Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA (1996) Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroencephalogr Clin Neurophysiol 100:375–383

    Article  CAS  PubMed  Google Scholar 

  30. Katayama Y, Tsubokawa T, Maemjima S, Hirayama T, Yamamoto T (1988) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psychiatry 51:50–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Katsuta T, Morioka T, Fujii T, Fukui M (1993) Physiological localization of the facial colliculus during direct surgery on an intrinsic brain stem lesion. Neurosurgery 32:861–863

    Article  CAS  PubMed  Google Scholar 

  32. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:e1, Article 1

    Article  CAS  PubMed  Google Scholar 

  33. Kubis N, Catala M (2003) Development and maturation of the pyramidal tract. Neurochirurgie 49:145–153

    CAS  PubMed  Google Scholar 

  34. Kyoshima K, Kobayashi S, Gibo H, Kuroyanagi T (1993) A study of safe entry zones via the floor of the fourth ventricle for brain-stem lesions. Report of three cases. J Neurosurg 78:987–993

    Article  CAS  PubMed  Google Scholar 

  35. Lang J Jr, Ohmachi N, Lang J Sr (1991) Anatomical landmarks of the rhomboid fossa (floor of the 4th ventricle), its length and its width. Acta Neurochir (Wien) 113:84–90

    Article  Google Scholar 

  36. Langeloo DD, Journee HL, Polak B, de Kleuver M (2001) A new application of TCE-MEP: spinal cord monitoring in patients with severe neuromuscular weakness undergoing corrective spine surgery. J Spinal Disord 14:445–448

    Article  CAS  PubMed  Google Scholar 

  37. Legatt AD (1991) Intraoperative neurophysiologic monitoring. In: Frost EAM (ed) Clinical anesthesia in neurosurgery. Butterworth-Heinemann, Boston

    Google Scholar 

  38. Legatt AD (2008) BAEPs in surgery. In: Nuwer MR (ed) Intraoperative monitoring of neural function. Handbook of clinical neurophysiology. Elsevier, Amsterdam, pp 334–349

    Chapter  Google Scholar 

  39. Lieberman JA, Lyon R, Feiner J, Diab M, Gregory GA (2006) The effect of age on motor evoked potentials in children under propofol/isoflurane anesthesia. Anesth Analg 103:316–321

    Article  CAS  PubMed  Google Scholar 

  40. MacDonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–429

    Article  PubMed  Google Scholar 

  41. Markand ON, Lee BI, Warren C et al (1987) Effects of hypothermia on brainstem auditory evoked potentials in humans. Ann Neurol 22(4):507–513

    Article  CAS  PubMed  Google Scholar 

  42. Markand ON, Warren C, Mallik GS, Williams CJ (1990) Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol 77(6):425–435

    Article  CAS  PubMed  Google Scholar 

  43. May PL, Blaser SI, Hoffman HJ, Humphreys RP, Harwood-Nash DC (1991) Benign intrinsic tectal “tumors” in children. J Neurosurg 74:867–871

    Article  CAS  PubMed  Google Scholar 

  44. Morota N, Deletis V, Epstein FJ, Kofler M, Abbott R, Lee M, Ruskin K (1995) Brain stem mapping: neurophysiological localization of motor nuclei on the floor of the fourth ventricle. Neurosurgery 37:922–930

    Article  CAS  PubMed  Google Scholar 

  45. Morota N, Deletis V, Lee M, Epstein FJ (1996) Functional anatomic relationship between brain-stem tumors and cranial motor nuclei. Neurosurgery 39:787–793, discussion 793–784

    Article  CAS  PubMed  Google Scholar 

  46. Morris EB, Li C, Khan RB, Sanford RA, Boop F, Pinlac R, Xiong X, Merchant TE (2009) Evolution of neurological impairment in pediatric infratentorial ependymoma patients. J Neuro-oncol 94:391–398

    Article  Google Scholar 

  47. Muller K, Homberg V, Lenard HG (1991) Magnetic stimulation of motor cortex and nerve roots in children. Maturation of cortico-motoneuronal projections. Electroencephalogr Clin Neurophysiol 81:63–70

    Article  CAS  PubMed  Google Scholar 

  48. Neervoort FW, Van Ouwekerk W, Folkersma H, Kaspers GJL, Vandertop WP (2010) Surgical morbidity and mortality of pediatric brain tumors: a single center audit. Childs Nerv Syst 26:1583–1592

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Neuloh G, Pechstein U, Cedzich C, Schramm J (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070

    Article  PubMed  Google Scholar 

  50. Neuloh G, Bogucki J, Schramm J (2009) Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry 80(4):417–422

    Article  CAS  PubMed  Google Scholar 

  51. Nezu A, Kimura S, Takeshita S (1999) Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol 110:1646–1649

    Article  CAS  PubMed  Google Scholar 

  52. Nossek E, Korn A, Shahar T, Kanner AA, Yaffe H, Marcovici D, Ben-Harosh C, Ben Ami H, Weinstein M, Shapira-Lichter I, Constantini S, Hendler T, Ram Z (2011) Clinical article: Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. J Neurosurg 114(3):738–746

    Article  PubMed  Google Scholar 

  53. Ohue S, Kohno S, Inoue A, Yamashita D, Harada H, Kumon Y, Kikuchi K, Miki H, Ohnishi T (2012) Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography. Neurosurg 70(2):283–293

    Article  Google Scholar 

  54. Olivier E, Edgley SA, Armand J, Lemon RN (1997) An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 17:267–276

    CAS  PubMed  Google Scholar 

  55. Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation for recording myogenic motor evoked potentials with the patient under general anesthesia. Neurosurgery 39:335–344

    Article  CAS  PubMed  Google Scholar 

  56. Pompili A, Caperle M, Pace A, Ramazzotti V, Raus L, Jandolo B, Occhipinti E (2002) Quality-of-life assessment in patients who had been surgically treated for cerebellar pilocytic astrocytoma in childhood. J Neurosurg 96:229–234

    Article  PubMed  Google Scholar 

  57. Prell J, Rampp S, Romstock J, Fahlbusch R, Strauss C (2007) Train time as a quantitative electromyographic parameter for facial nerve function in patients undergoing surgery for vestibular schwannoma. J Neurosurg 106:826–832

    Article  PubMed  Google Scholar 

  58. Procaccio F, Gambin R, Gottin L, Bricolo A (2000) Complications of brain stem surgery: prevention and treatment. Oper Tech Neurosurg 3:155–157

    Article  Google Scholar 

  59. Radtke RA, Erwin CW, Wilkins RH (1989) Intraoperative brainstem auditory evoked potentials: significant decrease in postoperative morbidity. Neurology 39:187–191

    Article  CAS  PubMed  Google Scholar 

  60. Recinos PF, Sciubba DM, Jallo GI (2007) Brainstem tumors: where are we today? Pediatr Neurosurg 43:192–201

    Article  PubMed  Google Scholar 

  61. Rhoton AL (2000) The posterior fossa veins. Neurosurgery 47:S69–S92

    Article  PubMed  Google Scholar 

  62. Ribi K, Relly C, Landolt MA, Alber FD, Boltshauser E, Grotzer MA (2005) Outcome of medulloblastoma in children: long term complications and quality of life. Neuropediatrics 36:357–365

    Article  CAS  PubMed  Google Scholar 

  63. Romstock J, Strauss C, Fahlbusch R (2000) Continuous electromyography monitoring of motor cranial nerves during cerebellopontine angle surgery. J Neurosurg 93:586–593

    Article  CAS  PubMed  Google Scholar 

  64. Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1994) Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol 481(Pt 1):243–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Sakuma J, Matsumoto M, Ohta M, Sasaki T, Kodama N (2002) Glossopharyngeal nerve evoked potentials of the posterior part of the tongue in dogs. Neurosurgery 51:1026–1033

    PubMed  Google Scholar 

  66. Sala F, Krzan MJ, Deletis V (2002) Intraoperative neurophysiological monitoring in pediatric neurosurgery: why, when, how? Childs Nerv Syst 18:264–287

    Article  PubMed  Google Scholar 

  67. Sala P, Lanteri A, Bricolo A (2004) Intraoperative neurophysiological monitoring of motor evoked potentials during brain stem and spinal cord surgery. In: Dolenc VV, Lobo J, Antunes HJ, Reulen M, Sindou AJ, Strong N, de Tribolet CA, Tulleken F, Vapalahti M (eds) Advanced and technical standards in neurosurgery., pp 133–169, Vol.29. Pickard JD (Editor in Chief)

    Chapter  Google Scholar 

  68. Sala F, Manganotti P, Grossauer S, Tramontano V, Mazza C, Gerosa M (2010) Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv Syst 26:473–490

    Article  PubMed  Google Scholar 

  69. Schlake HP, Goldbrunner R, Siebert M, Behr R, Roosen K (2001) Intra-operative electromyographic monitoring of extra-ocular motor nerves (Nn. III, VI) in skull base surgery. Acta Neurochir 143:251–261

    Article  CAS  PubMed  Google Scholar 

  70. Sekiya T, Hatayama T, Shimamura N, Suzuki S (2000) Intraoperative electrophysiological monitoring of oculomotor nuclei and their intramedullary tracts during midbrain tumor surgery. Neurosurgery 47:1170–1176, discussion 1176–1177

    Article  CAS  PubMed  Google Scholar 

  71. Singh R, Husain AM (2011) Neurophysiologic intraoperative monitoring of the glossopharyngeal and vagus nerves. J Clin Neurophysiol 28:582–586

    Article  PubMed  Google Scholar 

  72. Skinner SA (2011) Neurophysiologic monitoring of the spinal accessory nerve, hypoglosseal nerve, and the spinomedullary region. J Clin Neurophysiol 28:587–598

    Article  PubMed  Google Scholar 

  73. Sloan TB (2002) Intraoperative neurophysiology and anesthesia management. In: Deletis V, Shils J (eds) Neurophysiology in neurosurgery: a modern intraoperative approach. Academic, San Diego, pp 451–474

    Chapter  Google Scholar 

  74. Sloan TB (2010) Anesthesia and intraoperative neurophysiological monitoring in children. Childs Nerv Syst 26(2):227–235

    Article  PubMed  Google Scholar 

  75. Society ACN (2006) Guideline 9C guidelines on short-latency auditory evoked potentials. J Clin Neurophysiol 23:157–167

    Article  Google Scholar 

  76. Strauss C, Romstock J, Nimsky C, Fahlbusch R (1993) Intraoperative identification of motor areas of the rhomboid fossa using direct stimulation. J Neurosurg 79:393–399

    Article  CAS  PubMed  Google Scholar 

  77. Strauss C, Romstock J, Fahlbusch R (1994) Intraoperative mapping of the floor of the fourth ventricle. In: Traynelis VC, Loftus CM (eds) Intraoperative monitoring techniques in neurosurgery. McGraw-Hill, Inc, New York, pp 213–220

    Google Scholar 

  78. Strauss C, Lutjen-Drecoll E, Fahlbusch R (1997) Pericollicular surgical approaches to the rhomboid fossa. Part I. Anatomical basis. J Neurosurg 87:893–899

    Article  CAS  PubMed  Google Scholar 

  79. Strauss C, Romstock J, Fahlbusch R (1999) Pericollicular approaches to the rhomboid fossa. Part II. Neurophysiological basis. J Neurosurg 91:768–775

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki K, Matsumoto M, Ohta M, Sasaki T, Kodama N (1997) Experimental study for the identification of the facial colliculus using electromyography and antidromic evoked potentials. Neurosurgery 41:1130–1136

    Article  CAS  PubMed  Google Scholar 

  81. Szelenyi A, Bueno de Camargo A, Deletis V (2003) Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst 19:30–34

    PubMed  Google Scholar 

  82. Tanaka S, Takanashi J, Fujii K, Ujiie H, Hori T (2007) Motor evoked potential mapping and monitoring by direct brainstem stimulation. Tech Note J Neurosurg 107:1053–1057

    Article  Google Scholar 

  83. Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia; technical description. Neurosurgery 32:219–226

    Article  CAS  PubMed  Google Scholar 

  84. Vandertop WP, Hoffman HJ, Drake JM, Humphreys RP, Rutka JT, Amstrong DC, Becker LE (1992) Focal midbrain tumors in children. Neurosurgery 31:186–194

    Article  CAS  PubMed  Google Scholar 

  85. Wilson-Holden TJ, Padberg AM, Lenke LG, Larson BJ, Bridwell KH, Bassett GS (1999) Efficacy of intraoperative monitoring for pediatric patients with spinal cord pathology undergoing spinal deformity surgery. Spine (Phila Pa 1976) 24:1685–1692

    Article  CAS  Google Scholar 

  86. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, Burke DJ (1996) Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analg 82:744–749

    CAS  PubMed  Google Scholar 

  87. Zuzak TJ, Poretti A, Drexel B, Zehnder D, Boltshauser E, Grotzer MA (2008) Outcome of children with low grade cerebellar astrocytoma: long term complications and quality of life. Childs Nerv Syst 24:1447–1455

    Article  PubMed  Google Scholar 

  88. Sala F, Gallo P, Tramontano V (2015) Intraoperative neurophysiological monitoring in posterior fossa surgery. In Ozek M, Cinalli G, Maixner WJ, Sainte-Rose C (eds) Posterior fossa tumors in children. Springer, in press

  89. Sala F, Squintani G, Tramontano V (2014) Intraoperative neurophysiologic monitoring during brainstem surgery. In: Loftus CM, Biller J, Baron EM (eds) Intraoperative neuromonitoring. McGraw-Hill, New York, pp 285–297

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sala, F., Coppola, A. & Tramontano, V. Intraoperative neurophysiology in posterior fossa tumor surgery in children. Childs Nerv Syst 31, 1791–1806 (2015). https://doi.org/10.1007/s00381-015-2893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2893-1

Keywords

Navigation