Skip to main content
Log in

Uncommon pediatric tumors of the posterior fossa: pathologic and molecular features

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Three tumors are commonly encountered in the posterior fossa of children: pilocytic astrocytoma (PA), medulloblastoma (MB), and ependymoma. However, a variety of additional tumors may occasionally be appreciated. Appropriate and successful treatment of these less common cases is predicated upon correct pathologic diagnosis.

Methods/results

Reviewed herein are five less common tumors that may affect the posterior fossa of children: (1) “embryonal tumor with multilayered rosettes” (ETMR); (2) “cribriform neuroepithelial tumor” (CRINET); (3) “rosette-forming glioneuronal tumor” (RGNT); (4) “diffuse pilocytic astrocytoma” (dPA); and, (5) “desmoplastic small round cell tumor” (DSRCT). Each of the foregoing has a varying predilection for children and a posterior fossa location. For example, RGNT by definition arises in association with the 4th ventricle; while the mean age of those afflicted is 33, children may also be affected. Likewise, descriptions of dPA are generally restricted to the posterior fossa, and in particular, the cerebellum of children. Alternatively, DSRCT is a form of undifferentiated sarcoma that characteristically originates in the abdomen of children, but on occasion arises from the tentorium of young adults and children. The relevant molecular genetic underpinnings for each of the tumors highlighted herein have been well described and may carry diagnostic utility, not to mention clues as to underlying etiology.

Conclusion

A number of pediatric brain tumors have a tendency to occur in the posterior fossa. While far less common than PA, MB, or ependymoma, the entities highlighted herein appear to have a degree of proclivity for the posterior fossa of children and as such warrant due consideration in the clinicopathologic workup of these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anan M, Inoue R, Ishii K, Abe T, Fujiki M, Kobayashi H, Goya T, Nakazato Y (2009) A rosette-forming glioneuronal tumor of the spinal cord: the first case of a rosette-forming glioneuronal tumor originating from the spinal cord. Hum Pathol 40:898–901

    Article  PubMed  Google Scholar 

  2. Arnold MA, Stallings-Archer K, Marlin E, Grondin R, Olshefski R, Biegel JA, Pierson CR (2013) Cribriform neuroepithelial tumor arising in the lateral ventricle. Pediatr Dev Pathol 16:301–307

    Article  PubMed  Google Scholar 

  3. Bouchireb K, Auger N, Bhangoo R, Di Rocco F, Brousse N, Delattre O, Varlet P, Grill J (2008) Intracerebral small round cell tumor: an unusual case with EWS-WT1 translocation. Pediatr Blood Cancer 51:545–548

    Article  PubMed  Google Scholar 

  4. Dunham C, Pillai S, Steinbok P (2012) Infant brain tumors: a neuropathologic population-based institutional reappraisal. Hum Pathol 43(10):1668–1676

    Article  PubMed  Google Scholar 

  5. Ellezam B, Theeler BJ, Luthra R, Adesina AM, Aldape KD, Gilbert MR (2012) Recurrent PIK3CA mutations in rosette-forming glioneuronal tumor. Acta Neuropathol 123:285–287

    Article  PubMed  Google Scholar 

  6. Fletcher CDM, Unni KK, Mertens F (2002) World Health Organization classification of tumours. Pathology and genetics of tumours of soft tissue and bone. IARC Press, Lyon

    Google Scholar 

  7. Forshew T, Tatevossian RG, Lawson AR, Ma J, Neale G, Ogunkolade BW, Jones TA, Aarum J, Dalton J, Bailey S, Chaplin T, Carter RL, Gajjar A, Broniscer A, Young BD, Ellison DW, Sheer D (2009) Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 218:172–181

    Article  CAS  PubMed  Google Scholar 

  8. Friedrich C, von Bueren AO, von Hoff K, Gerber NU, Ottensmeier H, Deinlein F, Benesch M, Kwiecien R, Pietsch T, Warmuth-Metz M, Faldum A, Kuehl J, Kortmann RD, Rutkowski S (2013) Treatment of young children with CNS-primitive neuroectodermal tumors/pineoblastomas in the prospective multicenter trial HIT 2000 using different chemotherapy regimens and radiotherapy. Neuro-Oncology 15:224–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gessi M, Lambert SR, Lauriola L, Waha A, Collins VP, Pietsch T (2012) Absence of KIAA1549-BRAF fusion in rosette-forming glioneuronal tumors of the fourth ventricle (RGNT). J Neuro-Oncol 110:21–25

    Article  CAS  Google Scholar 

  10. Gessi M, Moneim YA, Hammes J, Goschzik T, Scholz M, Denkhaus D, Waha A, Pietsch T (2014) FGFR1 mutations in Rosette-forming glioneuronal tumors of the fourth ventricle. J Neuropathol Exp Neurol 73:580–584

    Article  CAS  PubMed  Google Scholar 

  11. Hasselblatt M, Oyen F, Gesk S, Kordes U, Wrede B, Bergmann M, Schmid H, Fruhwald MC, Schneppenheim R, Siebert R, Paulus W (2009) Cribriform neuroepithelial tumor (CRINET): a nonrhabdoid ventricular tumor with INI1 loss and relatively favorable prognosis. J Neuropathol Exp Neurol 68:1249–1255

    Article  PubMed  Google Scholar 

  12. Hayostek CJ, Shaw EG, Scheithauer B, O’Fallon JR, Weiland TL, Schomberg PJ, Kelly PJ, Hu TC (1993) Astrocytomas of the cerebellum. A comparative clinicopathologic study of pilocytic and diffuse astrocytomas. Cancer 72:856–869

    Article  CAS  PubMed  Google Scholar 

  13. Horbinski C (2013) To BRAF or not to BRAF: is that even a question anymore? J Neuropathol Exp Neurol 72:2–7

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ibrahim GM, Huang A, Halliday W, Dirks PB, Malkin D, Baskin B, Shago M, Hawkins C (2011) Cribriform neuroepithelial tumour: novel clinicopathological, ultrastructural and cytogenetic findings. Acta Neuropathol 122:511–514

    Article  PubMed  Google Scholar 

  15. Ida CM, Lambert SR, Rodriguez FJ, Voss JS, Mc Cann BE, Seys AR, Halling KC, Collins VP, Giannini C (2012) BRAF alterations are frequent in cerebellar low-grade astrocytomas with diffuse growth pattern. J Neuropathol Exp Neurol 71:631–639

    Article  CAS  PubMed  Google Scholar 

  16. Jackson EM, Sievert AJ, Gai X, Hakonarson H, Judkins AR, Tooke L, Perin JC, Xie H, Shaikh TH, Biegel JA (2009) Genomic analysis using high-density single nucleotide polymorphism-based oligonucleotide arrays and multiplex ligation-dependent probe amplification provides a comprehensive analysis of INI1/SMARCB1 in malignant rhabdoid tumors. Clin Cancer Res 15:1923–1930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Komori T, Scheithauer BW, Hirose T (2002) A rosette-forming glioneuronal tumor of the fourth ventricle: infratentorial form of dysembryoplastic neuroepithelial tumor? Am J Surg Pathol 26:582–591

    Article  PubMed  Google Scholar 

  19. Korshunov A, Remke M, Gessi M, Ryzhova M, Hielscher T, Witt H, Tobias V, Buccoliero AM, Sardi I, Gardiman MP, Bonnin J, Scheithauer B, Kulozik AE, Witt O, Mork S, von Deimling A, Wiestler OD, Giangaspero F, Rosenblum M, Pietsch T, Lichter P, Pfister SM (2010) Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 120:253–260

    Article  PubMed  Google Scholar 

  20. Korshunov A, Ryzhova M, Jones DT, Northcott PA, van Sluis P, Volckmann R, Koster J, Versteeg R, Cowdrey C, Perry A, Picard D, Rosenblum M, Giangaspero F, Aronica E, Schuller U, Hasselblatt M, Collins VP, von Deimling A, Lichter P, Huang A, Pfister SM, Kool M (2012) LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 124:875–881

    Article  PubMed Central  PubMed  Google Scholar 

  21. Korshunov A, Sturm D, Ryzhova M, Hovestadt V, Gessi M, Jones DT, Remke M, Northcott P, Perry A, Picard D, Rosenblum M, Antonelli M, Aronica E, Schuller U, Hasselblatt M, Woehrer A, Zheludkova O, Kumirova E, Puget S, Taylor MD, Giangaspero F, Peter Collins V, von Deimling A, Lichter P, Huang A, Pietsch T, Pfister SM, Kool M (2014) Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 128:279–289

    Article  PubMed Central  PubMed  Google Scholar 

  22. Li M, Lee KF, Lu Y, Clarke I, Shih D, Eberhart C, Collins VP, Van Meter T, Picard D, Zhou L, Boutros PC, Modena P, Liang ML, Scherer SW, Bouffet E, Rutka JT, Pomeroy SL, Lau CC, Taylor MD, Gajjar A, Dirks PB, Hawkins CE, Huang A (2009) Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell 16:533–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  24. Matsumura N, Wang Y, Nakazato Y (2014) Coexpression of glial and neuronal markers in the neurocytic rosettes of rosette-forming glioneuronal tumors. Brain Tumor Pathol 31:17–22

    Article  CAS  PubMed  Google Scholar 

  25. Neder L, Scheithauer BW, Turel KE, Arnesen MA, Ketterling RP, Jin L, Moynihan TJ, Giannini C, Meyer FB (2009) Desmoplastic small round cell tumor of the central nervous system: report of two cases and review of the literature. Virchows Arch 454:431–439

    Article  PubMed  Google Scholar 

  26. Ostrom QT, de Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, Stearns DS, Wolff JE, Wolinsky Y, Letterio JJ, Barnholtz-Sloan JS (2015) Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16(Suppl 10):x1–x36

    Article  PubMed  Google Scholar 

  27. Palma L, Russo A, Celli P (1984) Prognosis of the so-called “diffuse” cerebellar astrocytoma. Neurosurgery 15:315–317

    Article  CAS  PubMed  Google Scholar 

  28. Park JY, Kim E, Kim DW, Chang HW, Kim SP (2012) Cribriform neuroepithelial tumor in the third ventricle: a case report and literature review. Neuropathology

  29. Paulus W, Kleihues P (2010) Genetic profiling of CNS tumors extends histological classification. Acta Neuropathol 120:269–270

    Article  PubMed  Google Scholar 

  30. Pfister S, Janzarik WG, Remke M, Ernst A, Werft W, Becker N, Toedt G, Wittmann A, Kratz C, Olbrich H, Ahmadi R, Thieme B, Joos S, Radlwimmer B, Kulozik A, Pietsch T, Herold-Mende C, Gnekow A, Reifenberger G, Korshunov A, Scheurlen W, Omran H, Lichter P (2008) BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 118:1739–1749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pfister S, Remke M, Castoldi M, Bai AH, Muckenthaler MU, Kulozik A, von Deimling A, Pscherer A, Lichter P, Korshunov A (2009) Novel genomic amplification targeting the microRNA cluster at 19q13.42 in a pediatric embryonal tumor with abundant neuropil and true rosettes. Acta Neuropathol 117:457–464

    Article  CAS  PubMed  Google Scholar 

  32. Rickert CH, Paulus W (2001) Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 17:503–511

    Article  CAS  PubMed  Google Scholar 

  33. Russell DS, Rubinstein LJ (1989) Pathology of tumors of the nervous system, 5th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  34. Savard ML, Gilchrist DM (1989) Ependymomas in two sisters and a maternal male cousin with mosaicism with monosomy 22 in tumour. Pediatr Neurosci 15:80–84

    Article  CAS  PubMed  Google Scholar 

  35. Scheithauer BW, Silva AI, Ketterling RP, Pula JH, Lininger JF, Krinock MJ (2009) Rosette-forming glioneuronal tumor: report of a chiasmal-optic nerve example in neurofibromatosis type 1: special pathology report. Neurosurgery 64:E771–772, discussion E772

    Article  PubMed  Google Scholar 

  36. Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, Resnick AC, Sutton LN, Storm PB, Shaikh TH, Biegel JA (2009) Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 19:449–458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Tison V, Cerasoli S, Morigi F, Ladanyi M, Gerald WL, Rosai J (1996) Intracranial desmoplastic small-cell tumor. Report of a case. Am J Surg Pathol 20:112–117

    Article  CAS  PubMed  Google Scholar 

  38. Woehrer A, Slavc I, Peyrl A, Czech T, Dorfer C, Prayer D, Stary S, Streubel B, Ryzhova M, Korshunov A, Pfister SM, Haberler C (2011) Embryonal tumor with abundant neuropil and true rosettes (ETANTR) with loss of morphological but retained genetic key features during progression. Acta Neuropathol 122:787–790

    Article  PubMed  Google Scholar 

  39. Zhang J, Babu R, McLendon RE, Friedman AH, Adamson C (2013) A comprehensive analysis of 41 patients with rosette-forming glioneuronal tumors of the fourth ventricle. J Clin Neurosci 20:335–341

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Cynthia Hawkins for the FISH testing associated with the cases depicted in Figs. 1 and 4 and Dr. Glenda Hendson for her work on the cases depicted in Figs. 2 and 5.

Financial interests

Nothing to disclose.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Dunham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunham, C. Uncommon pediatric tumors of the posterior fossa: pathologic and molecular features. Childs Nerv Syst 31, 1729–1737 (2015). https://doi.org/10.1007/s00381-015-2735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-015-2735-1

Keywords

Navigation