Skip to main content

Advertisement

Log in

Development of an acute obstructive hydrocephalus model in rats using N-butyl cyanoacrylate

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Previous animal models of obstructive hydrocephalus that was frequently combined with subarachnoid inflammation are not suitable for investigating cerebrospinal fluid (CSF) flow between ventricles and cisterns in obstructive hydrocephalus. In this study, we attempted to develop a new animal model for obstructive hydrocephalus in rats sparing subarachnoid space using N-butyl cyanoacrylate (NBCA).

Methods

Hydrocephalus was induced in adult male Sprague–Dawley rats with NBCA (n = 15) or with kaolin (n = 10). For the NBCA model, a silicone tube was inserted through the foramen of Magendie into the fourth ventricle, into which 20 μL of a mixture of NBCA and ethiodized oil was injected. For the kaolin model, 100 μL of 20% kaolin solution was injected into the cistern magna. The rats in the NBCA and kaolin groups were sacrificed 3 and 21 days after surgery, respectively.

Results

Eleven rats in the NBCA group developed hydrocephalus (73.3%), with a 13.3% mortality rate. The kaolin group showed hydrocephalus in eight rats (80%), with a 20% mortality rate. The mean Evans’ indices were 0.37 ± 0.02, 0.45 ± 0.04, and 0.53 ± 0.09 in the control, NBCA, and kaolin groups, respectively (p < 0.05). There was no remarkable arachnoid adhesion or inflammatory change of the ventricular wall in the NBCA group.

Conclusions

The NBCA model seems to be a useful animal model for acute obstructive hydrocephalus with preserved subarachnoid CSF pathway. This model can be useful for studying CSF flow between ventricles and cisterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdullah A, Sachithanandan S, Tan OK, Chan YM, Khoo D, Mohamed Zawawi F, Omar H, Tan SS, Oemar H (2009) Cerebral embolism following N-butyl-2-cyanoacrylate injection for esophageal postbanding ulcer bleed: a case report. Hepatol Int 3:504-508

    Google Scholar 

  2. Bering EA Jr, Sato O (1963) Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J Neurosurg 20:1050–1063

    Article  PubMed  Google Scholar 

  3. Brothers MF, Kaufmann JC, Fox AJ, Deveikis JP (1989) n-Butyl 2-cyanoacrylate—substitute for IBCA in interventional neuroradiology: histopathologic and polymerization time studies. AJNR Am J Neuroradiol 10:777–786

    PubMed  CAS  Google Scholar 

  4. Cai X, McGraw G, Pattisapu JV, von Kalm L, Willingham S, Socci D, Gibson JS (2000) Hydrocephalus in the H-Tx rat: a monogenic disease? Exp Neurol 163:131–135

    Article  PubMed  CAS  Google Scholar 

  5. D’Amato CJ, O’Shea KS, Hicks SP, Glover RA, Annesley TM (1986) Genetic prenatal aqueductal stenosis with hydrocephalus in rat. J Neuropathol Exp Neurol 45:665–682

    Article  PubMed  Google Scholar 

  6. Del Bigio MR (2000) Calcium-mediated proteolytic damage in white matter of hydrocephalic rats? J Neuropathol Exp Neurol 59:946–954

    PubMed  Google Scholar 

  7. Diggs J, Price AC, Burt AM, Flor WJ, McKanna JA, Novak GR, James AE Jr (1986) Early changes in experimental hydrocephalus. Invest Radiol 21:118–121

    Article  PubMed  CAS  Google Scholar 

  8. Drake JM, Potts DG, Lemaire C (1989) Magnetic resonance imaging of silastic-induced canine hydrocephalus. Surg Neurol 31:28–40

    Article  PubMed  CAS  Google Scholar 

  9. Hochwald GM, Lux WE Jr, Sahar A, Ransohoff J (1972) Experimental hydrocephalus. Changes in cerebrospinal fluid dynamics as a function of time. Arch Neurol 26:120–129

    PubMed  CAS  Google Scholar 

  10. Hochwald GM (1985) Animal models of hydrocephalus: recent developments. Proc Soc Exp Biol Med 178:1–11

    PubMed  CAS  Google Scholar 

  11. Ishizaki R, Tashiro Y, Inomoto T, Hashimoto N (2000) Acute and subacute hydrocephalus in a rat neonatal model: correlation with functional injury of neurotransmitter systems. Pediatr Neurosurg 33:298–305

    Article  PubMed  CAS  Google Scholar 

  12. Johanson C, Del Bigio M, Kinsman S, Miyan J, Pattisapu J, Robinson M, Jones HC (2001) New models for analysing hydrocephalus and disorders of CSF volume transmission. Br J Neurosurg 15:281–283

    Article  PubMed  CAS  Google Scholar 

  13. Johnson MJ, Ayzman I, Wood AS, Tkach JA, Klauschie J, Skarupa DJ, McAllister JP, Luciano MG (1999) Development and characterization of an adult model of obstructive hydrocephalus. J Neurosci Methods 91:55–65

    Article  PubMed  CAS  Google Scholar 

  14. Kim DS, Oi S, Hidaka M, Sato O, Choi JU (1999) A new experimental model of obstructive hydrocephalus in the rat: the micro-balloon technique. Childs Nerv Syst 15:250–255

    Article  PubMed  CAS  Google Scholar 

  15. Klarica M, Oreskovic D, Bozic B, Vukic M, Butkovic V, Bulat M (2009) New experimental model of acute aqueductal blockage in cats: effects on cerebrospinal fluid pressure and the size of brain ventricles. Neuroscience 158:1397–1405

    Article  PubMed  CAS  Google Scholar 

  16. Krishnamurthy S, Li J, Schultz L, McAllister JP 2nd (2009) Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. Cerebrospinal Fluid Res 6:16

    Article  PubMed  Google Scholar 

  17. Lodhia KR, Shakui P, Keep RF (2006) Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl 96:207–211

    Article  PubMed  CAS  Google Scholar 

  18. Milhorat TH (1970) Experimental hydrocephalus. 1. A technique for producing obstructive hydrocephalus in the monkey. J Neurosurg 32:385–389

    Article  PubMed  CAS  Google Scholar 

  19. Odake G, Yamaki T, Naruse S (1978) CSF-circulation pathways in experimental hydrocephalus of the rat (author’s transl). Neurol Med Chir Tokyo 18:673–680

    Article  PubMed  CAS  Google Scholar 

  20. Penn RD, Lee MC, Linninger AA, Miesel K, Lu SN, Stylos L (2005) Pressure gradients in the brain in an experimental model of hydrocephalus. J Neurosurg 102:1069–1075

    Article  PubMed  Google Scholar 

  21. Ransohoff J, Shulman K, Fishman RA (1960) Hydrocephalus: a review of etiology and treatment. J Pediatr 56:399–411

    Article  PubMed  CAS  Google Scholar 

  22. Shapiro K, Kohn IJ, Takei F, Zee C (1987) Progressive ventricular enlargement in cats in the absence of transmantle pressure gradients. J Neurosurg 67:88–92

    Article  PubMed  CAS  Google Scholar 

  23. Slobodian I, Krassioukov-Enns D, Del Bigio MR (2007) Protein and synthetic polymer injection for induction of obstructive hydrocephalus in rats. Cerebrospinal Fluid Res 4:9

    Article  PubMed  Google Scholar 

  24. Stephensen H, Tisell M, Wikkelso C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50:763–771, discussion 771–763

    Article  PubMed  Google Scholar 

  25. Vetsika EK, Bannister CM, Buckle AM, Miyan JA (1999) The effects of CSF blockage in early-onset hydrocephalus on the activity of the germinal epithelium. Eur J Pediatr Surg 9(Suppl 1):43–44

    PubMed  Google Scholar 

  26. Vullo T, Manzo R, Gomez DG, Deck MD, Cahill PT (1998) A canine model of acute hydrocephalus with MR correlation. AJNR Am J Neuroradiol 19:1123–1125

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 20100026410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Won Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, Y.S., Park, S.W., Suk, J.S. et al. Development of an acute obstructive hydrocephalus model in rats using N-butyl cyanoacrylate. Childs Nerv Syst 27, 903–910 (2011). https://doi.org/10.1007/s00381-011-1398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-011-1398-9

Keywords

Navigation