Skip to main content

Advertisement

Log in

New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Hydrocephalus is a common medical condition characterized by abnormalities in the secretion, circulation and absorption of cerebrospinal fluid (CSF), resulting in ventricle dilatation. For the communicating hydrocephalus, without etiological treatment, its pathogenesis has been considered as a research emphasis. Many factors can damage the CSF system and trigger communicating hydrocephalus, including tumor surgery and hydrocephalus neurological diseases, such as brain trauma, infection, ICH and SAH. But according to our clinical experience, a big proportion of patients do not develop hydrocephalus. That is because the absorbing ability of CSF can compensate within a certain range. If the damage exceeds that range, hydrocephalus will occur. Once it occurs, it is not likely to be reversed, so a shunt surgery is always needed. Therefore, we believe that our orientation could transform the treatment of patient who has already showed hydrocephalus symptoms to the prevention of the occurrence in the patient with high risk of hydrocephalus. Based on the hypothesis above, we first divide the process of hydrocephalus into three stages and we believe that hydrocephalus are possible be reversed or halted in stage 1 and 2. The new concept of the pathogenesis in hydrocephalus will enrich our understanding and provide new insights to the therapeutic orientation. In conclusion, the future research direction should be the prevention of hydrocephalus, which should take a long period from the immediate occurrence of brain injury to several months or even years after the injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kahle KT, Kulkarni AV, Limbrick DD Jr, Warf BC (2016) Hydrocephalus in children. Lancet 387(10020):788–99

    Article  PubMed  Google Scholar 

  2. Bulat M, Klarica M (2011) Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 65:99–112

    Article  PubMed  Google Scholar 

  3. Oresˇkovic D, Klarica M (2010) The formation of cerebrospinal fluid: nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 64:241–262

    Article  Google Scholar 

  4. Oresˇkovic D, Klarica M (2011) Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions. Prog Neurobiol 94:238–258

    Article  Google Scholar 

  5. Levick JR (2004) Revision of the Starling principle: new views of tissue fluid balance. J Physiol 557(Pt 3):704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jacob M, Chappell D (2013) Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care 19(4):282–289

    Article  PubMed  Google Scholar 

  7. Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypoth. 59:696–702

    Article  CAS  Google Scholar 

  8. Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G (2012) Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 3(Suppl 1):25–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamada S, Kelly E (2016) Cerebrospinal Fluid Dynamics and the Pathophysiology of Hydrocephalus: New Concepts. Semin Ultrasound CT MR 37(2):84–91

    Article  PubMed  Google Scholar 

  10. Li T, Wang D, Tian Y, Yu H, Wang Y, Quan W, Cui W, Zhou L, Chen J, Jiang R, Zhang J (2014) Effects of atorvastatin on the inflammation regulation and elimination of subdural hematoma in rats. J Neurol Sci 341(1–2):88–96

    Article  CAS  PubMed  Google Scholar 

  11. Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22(6):778–784

    Article  PubMed  Google Scholar 

  12. Aghayev K, Bal E, Rahimli T, Mut M, Balci S, Vrionis F, Akalan N (2012) Aquaporin-4 expression is not elevated in mild hydrocephalus. Acta Neurochir (Wien) 154(4):753–759

    Article  Google Scholar 

  13. Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23(11):2929–2936

    Article  PubMed  Google Scholar 

  14. Kalani MY, Filippidis AS, Rekate HL (2012) Hydrocephalus and aquaporins: the role of aquaporin-1. Acta Neurochir Suppl 113:51–54

    Article  CAS  PubMed  Google Scholar 

  15. Shen XQ, Miyajima M, Ogino I, Arai H (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg 105(6 Suppl):459–464

    PubMed  Google Scholar 

  16. Meng H, Li F, Hu R, Yuan Y, Gong G, Hu S, Feng H (2015) Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition. Brain Res 30(1602):44–52

    Article  Google Scholar 

  17. Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G (2014) Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 75(6):696–705

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao C, Du H, Hua Y, Keep RF, Strahle J, Xi G (2014) Role of red blood cell lysis and iron in hydrocephalus after intraventricular hemorrhage. J Cereb Blood Flow Metab 34(6):1070–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Botfield H, Gonzalez AM, Abdullah O, Skjolding AD, Berry M, McAllister JP 2nd, Logan A (2013) Decorin prevents the development of juvenile communicating hydrocephalus. Brain 136(Pt 9):2842–2858

    Article  PubMed  Google Scholar 

  20. Yan H, Chen Y, Li L, Jiang J, Wu G, Zuo Y, Zhang JH, Feng H, Yan X, Liu F (2016) Decorin alleviated chronic hydrocephalus via inhibiting TGF-β1/Smad/CTGF pathway after subarachnoid hemorrhage in rats. Brain Res 1630:241–253

    Article  CAS  PubMed  Google Scholar 

  21. Yan H, Chen Y, Li L, Jiang J, Wu G, Zuo Y, Zhang JH, Feng H, Yan X, Liu F (2014) Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res 5(5):586–594

    Article  Google Scholar 

  22. Xu H, Xu B, Wang Z, Tan G, Shen S (2015) Inhibition of Wnt/β-catenin signal is alleviated reactive gliosis in rats with hydrocephalus. Childs Nerv Syst 31(2):227–234

    Article  PubMed  Google Scholar 

  23. Xu H, Tan G, Zhang S, Zhu H, Liu F, Huang C, Zhang F, Wang Z (2012) Minocycline reduces reactive gliosis in the rat model of hydrocephalus. BMC Neurosci. 13:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Chen D, Huang C, Bao J, Wang Z (2013) Expression of HGF, MMP-9 and TGF-β1 in the CSF and cerebral tissue of adult rats with hydrocephalus. Int J Neurosci 123(6):392–399

    Article  CAS  PubMed  Google Scholar 

  25. Lee P, Monaco EA 3rd, Friedlander RM (2013) Blocking TGF-β activity and associated inflammation may halt hydrocephalus. Neurosurgery 73(6):N13–N14

    Article  PubMed  Google Scholar 

  26. Lopes LS, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219(1):187–196

    Article  CAS  Google Scholar 

  27. Siomin V, Cinalli G, Grotenhuis A, Golash A, Oi S, Kothbauer K, Weiner H, Roth J, Beni-Adani L, Pierre-Kahn A, Takahashi Y, Mallucci C, Abbott R, Wisoff J, Constantini S (2002) Endoscopic third ventriculostomy in patients with cerebrospinal fluid infection and/or hemorrhage. J Neurosurg 97:519–524

    Article  PubMed  Google Scholar 

  28. Miller JM, McAllister JP (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aoyama Y, Kinoshita Y, Yokota A, Hamada T (2006) Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. J Neurosurg 104(5 Suppl):332–339

    PubMed  Google Scholar 

  30. Zaben M, Finnigan A, Bhatti MI, Leach P (2015) The initial neurosurgical interventions for the treatment of posthaemorrhagic hydrocephalus in preterm infants: a focused review. Br J Neurosurg 15:1–4

    Google Scholar 

  31. Christian EA, Melamed EF, Peck E, Krieger MD, McComb JG (2015) Surgical management of hydrocephalus secondary to intraventricular hemorrhage in the preterm infant. J Neurosurg Pediatr 13:1–7

    Google Scholar 

  32. Torrens C, Kelsall CJ, Hopkins LA, Anthony FW, Curzen NP, Hanson MA (2009) Atorvastatin restores endothelial function in offspring of protein-restricted rats in a cholesterol-independent manner. Hypertension 53(4):661–667

    Article  CAS  PubMed  Google Scholar 

  33. März P, Otten U, Miserez AR (2007) Statins induce differentiation and cell death in neurons and astroglia. Glia 55(1):1–12

    Article  PubMed  Google Scholar 

  34. Ma W, Shen D, Liu J, Pan J, Yu L, Shi W, Deng L, Zhu L, Yang F, Liu J, Cai W, Yang J, Luo Y, Cui H, Liu S (2016) Statin function as an anti- inflammation therapy for depression in patients with coronary artery disease by downregulating interleukin-1β. J Cardiovasc Pharmacol 67:129–135

    Article  CAS  PubMed  Google Scholar 

  35. Ma Q, Zhou Y, Zhai G, Gao F, Zhang L, Wang J, Yang Q, Cheng W (2015) Meta-analysis comparing rosuvastatin and atorvastatin in reducing concentration of C-reactive protein in patients with hyperlipidemia. Angiology doi:10.1177/0003319715599863

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H. New concept of the pathogenesis and therapeutic orientation of acquired communicating hydrocephalus. Neurol Sci 37, 1387–1391 (2016). https://doi.org/10.1007/s10072-016-2589-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-016-2589-7

Keywords

Navigation