Skip to main content

Advertisement

Log in

Cerebral energy metabolism and microdialysis in neurocritical care

  • Focus Session
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

It is of obvious clinical importance to monitor cerebral metabolism—in particular, cerebral energy metabolism and indicators of cellular damage—online at the bedside. The technique of cerebral microdialysis provides the opportunity for continuous monitoring of metabolic changes in the tissue before they are reflected in peripheral blood chemistry or in systemic physiological parameters. The basic idea of microdialysis is to mimic the function of a blood capillary by positioning a thin dialysis tube in the tissue and to be used to analyze the chemical composition of the interstitial fluid. The biochemical variables used during routine monitoring were chosen to cover important aspects of cerebral energy metabolism (glucose, pyruvate and lactate), to indicate excessive interstitial levels of excitatory transmitter substance (glutamate) and to give indications of degradation of cellular membranes (glycerol). Furthermore, pharmokinetic studies can be conducted using microdialysis. This article discusses technical and physiological aspects of microdialysis, and its clinical applications in brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ungerstedt U, Pycock CH (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 1278:1–5

    Google Scholar 

  2. Ungerstedt U (1991) Microdialysis—principles and application for studies in animal and man. J Intern Med 230:365–373

    Article  CAS  PubMed  Google Scholar 

  3. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U (1990) Extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46:301–308

    Article  CAS  PubMed  Google Scholar 

  4. Hillman J, Aneman O, Anderson C, Sjögren F, Säberg C, Mellergård P (2005) A microdialysis technique for routine measurement of macromolecules in the injured human brain. Neurosurgery 56:1264–1270

    Article  PubMed  Google Scholar 

  5. Hutchinson PJ, O'Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93:37–43

    Article  CAS  PubMed  Google Scholar 

  6. Tunblad K, Ederoth P, Gärdenfors A, Hammarlund-Udenaes M, Nordström CH (2004) Altered blood–brain barrier transport of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand 48:294–301

    Article  CAS  PubMed  Google Scholar 

  7. Ederoth P, Tunblad K, Bouw R, Lundberg CJ, Ungerstedt U, Nordström CH, Hammarlund-Udenaes M (2004) Blood–brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol 57:427–435

    Article  CAS  PubMed  Google Scholar 

  8. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH (2000) Intracerebral microdialysis in clinical practice. Normal values and variations during anaesthesia and neurosurgical operations. Neurosurgery. 47:701–710

    Article  CAS  PubMed  Google Scholar 

  9. Gärdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH (2002) Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir 144:601–608

    Article  Google Scholar 

  10. Ungerstedt U, Bäckström T, Hallström Å, Grände PO, Mellergård P, Nordström CH (1997) Microdialysis in normal and injured human brain. In: Kinney JM, Tucker HN (eds) Physiology stress and malnutrition. Functional correlates, nutritional intervention. Lippincott-Raven, Philadelphia, pp 361–374

    Google Scholar 

  11. Hillered L, Valtysson J, Enblad P, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491

    Article  CAS  PubMed  Google Scholar 

  12. Hagström-Toft E, Arner P, Wahrenberg H, Wennlund A, Ungerstedt U, Bolinder J (1993) Adrenergic regulation of human tissue metabolism in situ during mental stress. J Clin Endocrinol Metab 76:392–398

    Article  PubMed  Google Scholar 

  13. Blasberg RG, Fenstermacher JD, Patlack CS (1983) Transport of α-aminobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–12

    CAS  PubMed  Google Scholar 

  14. Hamberger A, Nyström B (1984) Extra- and intracellular amino acids in the hippocampusduring development of hepatic encephalopathy. Neurochem Res 9:1181–1192

    Article  CAS  PubMed  Google Scholar 

  15. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    Article  CAS  PubMed  Google Scholar 

  16. Benveniste H, Diemer NH (1987) Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol (Berl.) 74:234–238

    Article  CAS  Google Scholar 

  17. Siesjö BK (1978) Brain Energy Metabolism. Wiley, New York

    Google Scholar 

  18. Amer-Wåhlin I, Nord A, Bottalico B, Hansson SR, Ley D, Marsal K, Ungerstedt U, Nordstrom CH (2009) Fetal cerebral energy metabolism and electrocardiogram during experimental umbilical cord occlusion and resuscitation. J Matern Fetal Neonatal Med 10:1–9

    Article  Google Scholar 

  19. Ståhl N, Schalén W, Ungerstedt U, Nordström CH (2003) Bedside biochemical monitoring of the penumbra zone surrounding an evacuated acute subdural haematoma. Acta Neurol Scand 108:211–215

    Article  PubMed  Google Scholar 

  20. Engström M, Polito A, Reinstrup P, Romner B, Ryding E, Ungerstedt U, Nordström CH (2005) Intracerebral microdialysis in clinical routine—the importance of catheter location. J Neurosurg 102:460–469

    Article  PubMed  Google Scholar 

  21. Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U (2003) Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology 98:809–814

    Article  PubMed  Google Scholar 

  22. Nordström CH (2003) Assessment of critical thresholds for cerebral perfusion pressure by bedside monitoring of regional energy metabolism. Neurosurg Focus 15(6): Article 5

  23. Grände PO, Asgeirsson B, Nordström CH (2002) Volume targeted therapy of increased intracranial pressure: the Lund concept unifies surgical and non-surgical treatments. Acta Anaesthesiol Scand 46:929–941

    Article  PubMed  Google Scholar 

  24. Nordström CH (2005) Treatment of increased intracranial pressure: physiological and biochemical principles underlying volume targeted therapy—the “Lund concept”. Neurocrit Care 2:83–96

    Article  PubMed  Google Scholar 

  25. Rosdahl H, Hamrin K, Ungerstedt U, Henriksson J (2000) A microdialysis method for the in situ investigation of the action of large peptide molecules in human skeletal muscle: detection of local metabolic effects of insulin. Int J Biol Macromol 28:69–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Henrik Nordström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordström, CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst 26, 465–472 (2010). https://doi.org/10.1007/s00381-009-1035-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-009-1035-z

Keywords

Navigation