Skip to main content

Advertisement

Log in

Decision making

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

The craniocervical junction is affected by numerous pathological processes. This involves congenital, developmental, and acquired abnormalities. It can result in neurological deficit secondary to neurovascular compression, abnormal cerebrospinal fluid dynamics, and craniovertebral instability. A physiological approach based on an understanding of the craniovertebral junction dynamics, the site of encroachment and stability was formulated in 1977 and has stood the test of time. The author has reviewed 5,300 patients with neurological symptoms and signs secondary to an abnormality of the craniocervical junction. This includes 2,100 children.

Treatment of craniovertebral junction abnormalities

The factors that influence the specific treatment are: (1) reducibility of the lesion, (2) mechanics of compression and the direction of encroachment, (3) the presence of abnormal ossification centers and epiphyseal growth plates, and (4) the cause of the pathological process.

Stability at the craniocervical junction

Instability at the craniocervical junction is considered when the predental space is more than 5 mm in children below the age of 8, when the separation of the lateral atlantal masses is more than 6 mm where the cruciate ligament is felt to be disrupted, and if there is vertical translation of more than 2 mm between the clivus and the odontoid process signifying occipital instability. The gap between the occipital condyle and the lateral atlas facet should never be visible on lateral cervical radiographs. Present day magnetic resonance imaging can visualize disrupted transverse cruciate ligament, alar ligaments, tectorial membrane, and bony malalignment. The primary aim of treatment is to relieve compression at the cervicomedullary junction. Hence, stabilization is paramount in reducible lesions to maintain neural decompression. Irreducible lesions require decompression at the site where the compression has occurred; these were divided into ventral and dorsal compression states. In the former compression state, the operative procedure was a ventral decompression through a palatopharyngeal route, LeForte dropdown maxillotomy, or the lateral extrapharyngeal approach. In dorsal or dorsolateral compression states, a posterolateral decompression is required. If instability is present after decompression, posterior fixation is mandated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bhatnagar M, Sponseller PD, Carroll C IV, Tolo VT (1991) Pediatric atlantoaxial instability presenting as cerebral and cerebellar infarcts. J Pediatr Orthop 11:103–107

    PubMed  CAS  Google Scholar 

  2. Brockmeyer DL, York JE, Apfelbaum RI (2000) Anatomical instability of C1–2 transarticular screw placement in pediatric patients. J Neurosurg 92(Suppl):7–11

    PubMed  CAS  Google Scholar 

  3. Casey ATH, Hayward RD, Harkness WF, Crockard HA (1995) The use of autologous skull bone grafts for posterior fusion of the upper cervical spine in children. Spine 20:2217–2220

    Article  PubMed  CAS  Google Scholar 

  4. Dickman CA, Greene KA, Sonntag VKH (1998) Traumatic injuries of the craniovertebral junction. In: Dickman CA, Spetzler RF, Sonntag VKH (eds) Surgery of the Craniovertebral Junction. New York, Thieme, pp 175–196

    Google Scholar 

  5. Dickman CA, Mamourian A, Sonntag VKH, Drayer BP (1991) Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability. J Neurosurg 75(2):221–227

    PubMed  CAS  Google Scholar 

  6. Fielding JW, Griffin PP (1974) Os Odontoideum. An acquired lesion. J Bone Jt Surg (AM) 56(l):187–190

    CAS  Google Scholar 

  7. Garfin SR, Botte MJ, Waters RL et al (1986) Complications in the use of the halo fixation device. J Bone Jt Surg (Am) 68:320–325

    CAS  Google Scholar 

  8. Goel VK, Clark CR, Gallaes K, Liu YK (1988) Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex. J Biomechanics 21:673–680

    Article  CAS  Google Scholar 

  9. Greene KA, Dickman CA, Marciano FF, Drabier J, Drayer BP, Sonntag VK (1994) Transverse atlantal ligament disruption associated with odontoid fractures. Spine 19(20):2307–2314

    PubMed  CAS  Google Scholar 

  10. Grisel P (1930) Enucleation de l’atlas et torticollis nasopharyngien. Presse Med 38:50–56

    Google Scholar 

  11. Honma G, Murota K, Shiba R, Kondo H (1989) Mandible and tongue-splitting approach for giant cell tumor of axis. Spine 14(11):1204–1210

    Article  PubMed  CAS  Google Scholar 

  12. Hughes TB Jr, Richman JD, Rothfus WE (1999) Diagnosis of os odontoideum using kinematic magnetic resonance imaging. Spine 24:715–718

    Article  PubMed  Google Scholar 

  13. Jirout J (1973) Changes in the atlas-axis relations on lateral flexion of the head and neck. Neuroradiology 6:215–218

    Article  PubMed  CAS  Google Scholar 

  14. Kaufmann RA, Carroll CD, Buncher CR (1987) Atlanto-occipital junction: standards for measurement in normal children. AJNR 8(6):995–999

    Google Scholar 

  15. Kawashima M, Tanriover N, Rhoton AL Jr, Ulm AJ, Matsushima T (2003) Comparison of the far lateral and extreme lateral variants of the atlanto-occipital transarticular approach to anterior extradural lesions of the craniovertebral junction. Neurosurgery 53:662–675

    Article  PubMed  Google Scholar 

  16. Marciano FF, Greene KA, Mattingly LG (1994) Halo brace immobilization of the cervical spine: A review of principles and application techniques. BNI Quarterly 10(1):13–17

    Google Scholar 

  17. Menezes AH (1987) Traumatic lesions of the craniovertebral junction. In: VanGilder JC, Menezes AH, Dolan K (eds) Textbook of craniovertebral junction abnormalities. Futura, Mt. Kisco

    Google Scholar 

  18. Menezes AH (1991) Anterior approaches to the craniocervical junction. Clin Neurosurg 37:756–769

    PubMed  CAS  Google Scholar 

  19. Menezes AH (2003) Developmental abnormalities of the craniovertebral junction. In: Winn HR (ed) Youman’s Neurological Surgery. Saunders, Philadelphia, pp 3331–3345

    Google Scholar 

  20. Menezes AH (1995) Primary craniovertebral anomalies and the hindbrain herniation syndrome (Chiari I): Data base analysis. Pediatr Neurosurg 23:260–269

    Article  PubMed  CAS  Google Scholar 

  21. Menezes AH (1995) Congenital and acquired abnormalities of the craniovertebral junction. In: Youman J (ed) Neurological Surgery. 4th edn. Saunders, Philadelphia, pp 1035–1089

    Google Scholar 

  22. Menezes AH, Muhonen M (1990) Management of occipitocervical instability. In: Cooper PR (ed) Management of Posttraumatic Spinal Instability. AANS, Park Ridge, pp 65–76

    Google Scholar 

  23. Meyer B, Vieweg U, Rao JG, Stoffel M, Schramm J (2001) Surgery for upper cervical spine instabilities in children. Acta Neurochirurgica 143:759–765

    Article  PubMed  CAS  Google Scholar 

  24. Nishikawa M, Ohata K, Baba M, Terakawa Y, Hara M (2004) Chiari I malformation associated with ventral compression and instability: One-stage posterior decompression and fusion with a new instrumentation technique. Neurosurgery 54:1430–1435

    Article  PubMed  Google Scholar 

  25. Pappas CTE, Rekate HL (1988) Role of magnetic resonance imaging and three-dimensional computerized tomography in craniovertebral junction anomalies. Pediatr Neurosci 14:18–22

    Article  PubMed  CAS  Google Scholar 

  26. Pauli RM, Gilbert EF (1986) Upper cervical cord compression as a cause of death in osteogenesis imperfecta type II. J Pediatr 108:579

    Article  PubMed  CAS  Google Scholar 

  27. Powers B, Miller MD, Kramer RS, Martinez S, Gehweiler JA Jr (1979) Traumatic anterior atlanto-occipital dislocation. Neurousrgery 4:12–17

    Article  CAS  Google Scholar 

  28. Ryken TC, Menezes AH (1994) Cervicomedullary compression in achondroplasia. J Neurosurg 81:43–48

    Article  PubMed  CAS  Google Scholar 

  29. Sawin PD, Menezes AH (1997) Basilar invagination in osteogenesis imperfecta and related osteochondrodysplasias: Medical and surgical management. J Neurosurg 86:950–960

    PubMed  CAS  Google Scholar 

  30. Selecki BR (1969) The effects of rotation of the atlas on the axis: Experimental work. Med J Aust 1:1012–1015

    PubMed  CAS  Google Scholar 

  31. Shin H, Barrenechea IJ, Lesser J, Sen C, Perin NI (2006) Occipitocervical fusion after resection of craniovertebral junction tumors. J Neurosurg Spine 4:137–144

    Article  PubMed  Google Scholar 

  32. Smoker WRK, Keyes WD, Dunn VD, Menezes AH (1986) MRI versus conventional Radiologic examinations in the evaluation of the craniovertebral and cervicomedullary junction. Radiographics 6(6):953–994

    PubMed  CAS  Google Scholar 

  33. Spence KF Jr, Decker MS, Sell KW (1970) Bursting atlantal fracture associated with rupture of the transverse ligament. J Bone Joint Surg Am 52(3):543–549

    PubMed  Google Scholar 

  34. Stevens JM, Chong WK, Barber C, Kendall BE, Crockard HA (1994) A new appraisal of abnormalities of the odontoid process associated with atlantoaxial subluxation and neurological disability. Brain 117(pt 1):133–148

    Article  PubMed  Google Scholar 

  35. Taggard DA, Menezes AH, Ryken TC (2000) Treatment of Down syndrome-associated craniovertebral junction abnormalities. J Neurosurg 93:205–213

    PubMed  CAS  Google Scholar 

  36. Tuite GF, Veres R, Crockard HA, Sell D (1996) Pediatric transoral surgery: Indications, complication and long-term outcome. J Neurosurg 84:573–583

    PubMed  CAS  Google Scholar 

  37. Ture U, Pamir MN (2002) Extreme lateral-transatlas approach for resection of the dens of the axis. J Neurosurg (Spine) 96:73–82

    Google Scholar 

  38. Vender JR, Harrison SJ, McDonnell DE (2000) Fusion and instrumentation at C1–3 via the high anterior cervical approach. J Neurosurg (Spine) 92:24–29

    CAS  Google Scholar 

  39. Vishteh AG, Beals SP, Joganic EF, Reiff JL, Dickman CA, Sonntag VKH, Spetzler RF (1999) Bilateral sagittal split mandibular osteotomies as an adjunct to the transoral approach to the anterior craniovertebral junction. J Neurosurg (Spine) 90:367–270

    Google Scholar 

  40. VonTorklus D, Gehle W (1972) The upper cervical spine. In: Verlag GT (ed) Regional anatomy, pathology and traumatology in a systemic radiological atlas and textbook. Grune & Stratton, New York, pp 1–99

    Google Scholar 

  41. Werne S (1957) Studies in spontaneous atlas dislocation, I: the craniovertebral joints. Acta Orthop Scan 23:11–83

    Google Scholar 

  42. Wetzel FT, LaRocca H (1989) Grisel’s syndrome: a review. Clin Orthop Rel Res 240:141–152

    Google Scholar 

  43. White AA III, Panjabi MM (1978) The clinical biomechanics of the occipitoatlantoaxial complex. Ortho Clin North Am 9:867–878

    Google Scholar 

  44. Wiesel S, Kraus D, Rothman RH (1978) Atlanto-occipital hypermobility. Orthop Clin North Am 9(4):969–972

    PubMed  CAS  Google Scholar 

  45. Wiesel SW, Rothman RH (1979) Occipitoatlantal hypermobility. Spine 4:187–191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold H. Menezes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, A.H. Decision making. Childs Nerv Syst 24, 1147–1153 (2008). https://doi.org/10.1007/s00381-008-0604-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-008-0604-x

Keywords

Navigation