Skip to main content

Advertisement

Log in

Identification of candidate cancer genes involved in human retinoblastoma by data mining

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to discover potential cancer-related genes involved in retinoblastoma (RB) tumorigenesis.

Materials and methods

Using a data-mining tool called cDNA Digital Gene Expression Displayer (DGED) and serial analysis of gene expression DGED from the Cancer Genome Anatomy Project (CGAP) database, eight cDNA libraries and five serial analysis of gene expression libraries from retinoblastoma (RB) solid tumors and normal retina tissues were analyzed. The deregulated genes were classified into major families using information from Gene Ontology. Several candidate cancer-related genes were analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on tissue microarrays (TMA) of RB and human normal retina samples.

Results

A total of 260 genes with deregulated expression emerged when examined by DGED from the CGAP database. Functional classification of these genes not only provided an interesting insight into RB tumorigenesis but also facilitated target identification for RB therapeutics. Several candidate genes were confirmed by real-time RT-PCR and IHC analysis on TMA and were found to be associated with RB genesis through text-mining in Information Hyperlinked over Proteins. The results also implicated MCM7 and WIF1 as promising therapeutic targets for RB, but further validation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dyer MA, Rodriguez-Galindo C, Wilson MW (2005) Use of preclinical models to improve treatment of retinoblastoma. PLoS Med 2:e332 DOI 10.1371/journal.pmed.0020332

    Article  PubMed  Google Scholar 

  2. Dunn JM, Phillips RA, Becker AJ, Gallie BL (1988) Identification of germline and somatic mutations affecting the retinoblastoma gene. Science 241:1797–1800

    Article  PubMed  CAS  Google Scholar 

  3. Valverde JR, Alonso J, Palacios I, Pestaña AJ (2005) RB1 gene mutation up-date, a meta-analysis based on 932 reported mutations available in a searchable database. BMC Genet 6:53 DOI 10.1186/1471-2156-6-53

    Article  PubMed  Google Scholar 

  4. Corson TW, Gallie BL (2007) One hit, two hits, three hits, more? Genomic changes in the development of retinoblastoma. Genes Chromosomes Cancer 46:617–634 Review

    Article  PubMed  CAS  Google Scholar 

  5. Strausberg RL, Dahl CA, Klausner RD (1997) New opportunities for uncovering the molecular basis of cancer. Nature Genet 15:415–416

    Article  PubMed  CAS  Google Scholar 

  6. Strausberg RL, Buetow KH, Emmert-Buck MR, Klausner RD (2000) The cancer genome anatomy project: building an annotated gene index. Trends Genet 16:103–106

    Article  PubMed  CAS  Google Scholar 

  7. Strausberg RL, Greenhut SF, Grouse LH, Schaefer CF, Buetow KH (2001) In silico analysis of cancer through the Cancer Genome Anatomy Project. Trends Cell Biol 11:S66–71 Review

    PubMed  CAS  Google Scholar 

  8. Loging WT, Lal A, Siu IM, Loney TL, Wikstrand CJ, Marra MA, Prange C, Bigner DD, Strausberg RL, Riggins GJ (2000) Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 10:1393–1402

    Article  PubMed  CAS  Google Scholar 

  9. Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R (2000) Cancer gene discovery using digital differential display. Cancer Res 60:4037–4043

    PubMed  CAS  Google Scholar 

  10. Dennis JL, Vass JK, Wit EC, Keith WN, Oien KA (2002) Identification from public data of molecular markers of adenocarcinoma characteristic of the site of origin. Cancer Res 62:5999–6005

    PubMed  CAS  Google Scholar 

  11. Yanglin P, Lina Z, Zhiguo L, Na L, Haifeng J, Guoyun Z, Jie L, Jun W, Tao L, Li S, Taidong Q, Jianhong W, Daiming F (2007) KCNE2, a down-regulated gene identified by in silico analysis, suppressed proliferation of gastric cancer cells. Cancer Lett 246:129–138

    Article  PubMed  Google Scholar 

  12. Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A (2007) Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics 90:344–353

    Article  PubMed  CAS  Google Scholar 

  13. Zeng Z, Zhou Y, Xiong W, Luo X, Zhang W, Li X, Fan S, Cao L, Tang K, Wu M, Li G (2007) Analysis of gene expression identifies candidate molecular markers in nasopharyngeal carcinoma using microdissection and cDNA microarray. J Cancer Res Clin Oncol 133:71–81

    Article  PubMed  CAS  Google Scholar 

  14. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664

    Article  PubMed  CAS  Google Scholar 

  15. Chou CC, Davis RC, Fuller ML, Slovin JP, Wong A, Wright J, Kania S, Shaked R, Gatti RA, Salser WA (1987) Gamma-actin: unusual mRNA 3'-untranslated sequence conservation and amino acid substitutions that may be cancer related. Proc Natl Acad Sci U S A 84:2575–2579

    Article  PubMed  CAS  Google Scholar 

  16. Liau SS, Jazag A, Whang EE (2006) HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res 66:11613–11622

    Article  PubMed  CAS  Google Scholar 

  17. Chiappetta G, Botti G, Monaco M, Pasquinelli R, Pentimalli F, Di Bonito M, D’Aiuto G, Fedele M, Iuliano R, Palmieri EA, Pierantoni GM, Giancotti V, Fusco A (2004) HMGA1 protein overexpression in human breast carcinomas: correlation with ErbB2 expression. Clin Cancer Res 10:7637–7644

    Article  PubMed  CAS  Google Scholar 

  18. Giannini G, Cerignoli F, Mellone M, Ambrosi C, Rinaldi C, Dominici C, Frati L, Screpanti I, Gulino A (2005) High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res 65:8308–8316

    Article  PubMed  CAS  Google Scholar 

  19. Facoetti A, Ranza E, Grecchi I, Benericetti E, Ceroni M, Morbini P, Nano R (2006) Immunohistochemical evaluation of minichromosome maintenance protein 7 in astrocytoma grading. Anticancer Res 26:3513–3516

    PubMed  CAS  Google Scholar 

  20. Ren B, Yu G, Tseng GC, Cieply K, Gavel T, Nelson J, Michalopoulos G, Yu YP, Luo JH (2006) MCM7 amplification and over expression are associated with prostate cancer progression. Oncogene 25:1090–1098

    Article  PubMed  CAS  Google Scholar 

  21. Li SS, Xue WC, Khoo US, Ngan HYS, Chan KYK, Tam IYS, Chiu PM, Ip PPC, Tam KF, Cheung ANY (2005) Replicative MCM7 protein as a proliferation marker in endometrial carcinoma: a tissue microarray and clinicopathological analysis. Histopathology 46:307–313

    Article  PubMed  CAS  Google Scholar 

  22. Brake T, Connor JP, Petereit DG, Lambert PF (2003) Comparative analysis of cervical cancer in women and in a human papillomavirus-transgenic mouse model: identification of minichromosome maintenance protein 7 as an informative biomarker for human cervical cancer. Cancer Res 63:8173–8180

    PubMed  CAS  Google Scholar 

  23. Shohet JM, Hicks MJ, Plon SE, Burlingame SM, Stuart S, Chen SY, Brenner MK, Nuchtern JG (2003) Minichromosome maintenance protein MCM7 is a direct target of the MYCN transcription factor in neuroblastoma. Cancer Res 62:1123–1128

    Google Scholar 

  24. Falini B, Nicoletti I, Bolli N, Martelli MP, Liso A, Gorello P, Mandelli F, Mecucci C, Martelli MF (2007) Translocations and mutations involving the nucleophosmin (NPM1) gene in lymphomas and leukemias. Haematologica 92:519–532 Review

    Article  PubMed  CAS  Google Scholar 

  25. Jeong EG, Lee SH, Yoo NJ, Lee SH (2007) Absence of nucleophosmin 1 (NPM1) gene mutations in common solid cancers. APMIS 115:341–346

    Article  PubMed  CAS  Google Scholar 

  26. Leys CM, Nomura S, LaFleur BJ, Ferrone S, Kaminishi M, Montgomery E, Goldenring JR (2007) Expression and prognostic significance of prothymosin-alpha and ERp57 in human gastric cancer. Surgery 141:41–50

    Article  PubMed  Google Scholar 

  27. Suzuki S, Takahashi S, Takahashi S, Takeshita K, Hikosaka A, Wakita T, Nishiyama N, Fujita T, Okamura T, Shirai T (2006) Expression of prothymosin alpha is correlated with development and progression in human prostate cancers. Prostate 66:463–469

    Article  PubMed  CAS  Google Scholar 

  28. Satoh K, Narumi K, Sakai T, Abe T, Kikuchi T, Matsushima K, Sindoh S, Motomiya M (1992) Cloning of 67-kDa laminin receptor cDNA and gene expression in normal and malignant cell lines of the human lung. Cancer Lett 62:199–203

    Article  PubMed  CAS  Google Scholar 

  29. Sun B, Zhang S, Zhang D, Liu Y, Li Y, Rong Z, Zhu Y, Jia X (2007) Clusterin is associated with spontaneous breast cancer in TA2 mice. FEBS Lett 581:3277–3282

    Article  PubMed  CAS  Google Scholar 

  30. Mourra N, Couvelard A, Tiret E, Olschwang S, Flejou JF (2007) Clusterin is highly expressed in pancreatic endocrine tumours but not in solid pseudopapillary tumours. Histopathology 50:331–337

    Article  PubMed  CAS  Google Scholar 

  31. Qu Y, Li JF, Cai Q, Wang YW, Gu QL, Zhu ZG, Liu BY (2007) Over-expression of FRZB in gastric cancer cell suppresses proliferation and induces differentiation. J Cancer Res Clin Oncol 134(3):353–364

    Article  PubMed  Google Scholar 

  32. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, Luo XM, Wu MH, Yang YX, Huang C, Cao L, Tang K, Qian J, Shen SR, Li GY (2007) Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 38:120–133

    Article  PubMed  CAS  Google Scholar 

  33. Queimado L, Lopes CS, Reis AM (2007) WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer 46:215–225

    Article  PubMed  CAS  Google Scholar 

  34. Ai L, Tao Q, Zhong S, Fields CR, Kim WJ, Lee MW, Cui Y, Brown KD, Robertson KD (2006) Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis 27:1341–1348

    Article  PubMed  CAS  Google Scholar 

  35. Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K, Adachi Y, Endo T, Imai K, Shinomura Y (2005) Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 24:7946–7952

    Article  PubMed  CAS  Google Scholar 

  36. Lin YC, You L, Xu Z, He B, Mikami I, Thung E, Chou J, Kuchenbecker K, Kim J, Raz D, Yang CT, Chen JK, Jablons DM (2006) Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun 341:635–640

    Article  PubMed  CAS  Google Scholar 

  37. Tell S, Yi H, Jockovich ME, Murray TG, Hackam AS (2006) The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. Biochem Biophys Res Commun 349:261–269

    Article  PubMed  CAS  Google Scholar 

  38. Xu H, Wang C, Zhu H, Liu S, Xu X, Jiang Y (1995) Characteristics of an established retinoblastoma cell line HXO-Rb44. Yan Ke Xue Bao 11:16–21

    PubMed  CAS  Google Scholar 

  39. Schulz HL, Goetz T, Kaschkoetoe J, Weber BH (2004) The retinome—defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium. BMC Genomics 5(1):50 DOI 10.1186/1471-2164-5-50

    Article  PubMed  Google Scholar 

  40. Semizarov D, Kroeger P, Fesik S (2004) siRNA-mediated gene silencing: a global genome view. Nucleic Acids Res 32:3836–3845

    Article  PubMed  CAS  Google Scholar 

  41. Sterner JM, Dew-Knight S, Musahl C, Kornbluth S, Horowitz JM (1998) Negative regulation of DNA replication by the retinoblastoma protein is mediated by its association with MCM7. Mol Cell Biol 18:2748–2757

    PubMed  CAS  Google Scholar 

  42. Chau KY, Munshi N, Keane-Myers A, Cheung-Chau KW, Tai AK, Manfioletti G, Dorey CK, Thanos D, Zack DJ, Ono SJ (2000) The architectural transcription factor high mobility group I(Y) participates in photoreceptor-specific gene expression. J Neurosci 20:7317–7324

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and corneal donors for their participation in this study. This work was supported in part by the National Basic Research Program of China (2007CB5119005), National Natural Science Foundation of China (30471867), the Program for Innovative Researcher Team in Science and Technology in Fujian Province University (FMU-RT001), Fujian Provincial Natural Science Foundation (C0510009, C0520003), and Science Development Foundation of Fujian Medical University (FJGXY04020).

Conflict of interest statement

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Yin Lin or Xu Ma.

Additional information

Juhua Yang and Jian-Jun Zhao contribute equally to the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhao, JJ., Zhu, Y. et al. Identification of candidate cancer genes involved in human retinoblastoma by data mining. Childs Nerv Syst 24, 893–900 (2008). https://doi.org/10.1007/s00381-008-0595-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-008-0595-7

Keywords

Navigation