Skip to main content

Advertisement

Log in

Native T1 heterogeneity for predicting reverse remodeling in patients with non-ischemic dilated cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

A recent study has shown that the heterogeneity of native T1 mapping may be a new prognostic factor for patients with non-ischemic dilated cardiomyopathy (NIDCM). This study aimed to investigate the predictive value of native T1 heterogeneity of the left ventricular (LV) myocardium, as assessed by pixel-wise histogram analysis, for predicting left ventricular reverse remodeling (LVRR) by medical therapy in patients with NIDCM. A total of one hundred and thirteen NIDCM patients (mean age: 63 ± 12 years; 91 males and 22 females; mean LV ejection fraction (EF): 37 ± 10%) were retrospectively analyzed. T1 mapping images were acquired using a modified look-locker inversion recovery (MOLLI) sequence. We performed histogram analysis of native T1 mapping of LV myocardium, mean (T1-mean) and standard deviation (T1-STD) of native T1 time from each pixel were calculated. Extracellular volume fraction (ECV) was also evaluated. LVRR was defined as LVEF increased ≥ 10% points and decrease in LV end-diastolic volume ≥ 10% at 12 months from initiation of medical therapy. Cutoff value of T1-mean and T1-STD was set as median value of each parameter. Sixty (53%) NIDCM patients reached LVRR. Area under the receiver-operating characteristics curve for predicting LVRR was 0.763 (95% confidence interval (CI) 0.679–0.847) for %LGE, 0.757 (95% CI 0.663–0.850) for T1-mean, 0.724 (95% CI 0.625–0.823) for T1-STD, 0.800 (95% CI 0.717–0.882) for ECV, respectively. Proportion of LVRR was significantly lower in NIDCM patients with high T1-mean and high T1-STD (12%) compared to NIDCM with high T1-mean and low T1-STD (65%) (p < 0.001). Adding T1-STD to T1-mean improved AUC from 0.757 to 0.806, comparable to AUC of ECV. Combination of T1-mean and T1-STD, a parameter of heterogeneity of native T1 of the LV myocardium, may be a useful for prediction of LVRR by medical therapy without use of gadolinium contrast for patients with NIDCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance

ECV:

Extracellular volume fraction

GDMT:

Guideline-directed medical therapy

IQR:

Interquartile range

NIDCM:

Non-ischemic dilated cardiomyopathy

LGE:

Late gadolinium enhancement

LVEF:

Left ventricular ejection fraction

LVEDV:

Left ventricular diastolic volume

LVRR:

Left ventricular reverse remodeling

MRI:

Magnetic resonance imaging

MOLLI:

Modified look-locker inversion recovery

ROC:

Receiver-operating characteristics

T1-mean:

Mean of native T1 time from each pixel

T1-STD:

Standard deviation of native T1 time from each pixel

References

  1. Pinto YM, Elliott PM, Arbustini E, Adler Y, Anastasakis A, Bohm M, Duboc D, Gimeno J, de Groote P, Imazio M, Heymans S, Klingel K, Komajda M, Limongelli G, Linhart A, Mogensen J, Moon J, Pieper PG, Seferovic PM, Schueler S, Zamorano JL, Caforio AL, Charron P (2016) Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J 37(23):1850–1858

    Article  Google Scholar 

  2. Japp AG, Gulati A, Cook SA, Cowie MR, Prasad SK (2016) The diagnosis and evaluation of dilated cardiomyopathy. J Am Coll Cardiol 67(25):2996–3010

    Article  Google Scholar 

  3. Lehrke S, Lossnitzer D, Schob M, Steen H, Merten C, Kemmling H, Pribe R, Ehlermann P, Zugck C, Korosoglou G, Giannitsis E, Katus HA (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97(9):727–732

    Article  Google Scholar 

  4. Iles LM, Ellims AH, Llewellyn H, Hare JL, Kaye DM, McLean CA, Taylor AJ (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16(1):14–22

    Article  Google Scholar 

  5. Aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis E, Korosoglou G, Katus HA, Steen H (2014) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16(2):210–216

    Article  Google Scholar 

  6. Messroghli DR, Nordmeyer S, Dietrich T, Dirsch O, Kaschina E, Savvatis K, Oh-I D, Klein C, Berger F, Kuehne T (2011) Assessment of diffuse myocardial fibrosis in rats using small-animal Look-Locker inversion recovery T1 mapping. Circ Cardiovasc Imaging 4(6):636–640

    Article  Google Scholar 

  7. Merlo M, Pivetta A, Pinamonti B, Stolfo D, Zecchin M, Barbati G, Di Lenarda A, Sinagra G (2014) Long-term prognostic impact of therapeutic strategies in patients with idiopathic dilated cardiomyopathy: changing mortality over the last 30 years. Eur J Heart Fail 16(3):317–324

    Article  CAS  Google Scholar 

  8. Xu Y, Li W, Wan K, Liang Y, Jiang X, Wang J, Mui D, Li Y, Tang S, Guo J, Guo X, Liu X, Sun J, Zhang Q, Han Y, Chen Y (2021) Myocardial tissue reverse remodeling after guideline-directed medical therapy in idiopathic dilated cardiomyopathy. Circ Heart Fail 14(1):e007944

    Article  Google Scholar 

  9. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffter T, Nagel E (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484

    Article  Google Scholar 

  10. Nakamori S, Dohi K, Ishida M, Goto Y, Imanaka-Yoshida K, Omori T, Goto I, Kumagai N, Fujimoto N, Ichikawa Y, Kitagawa K, Yamada N, Sakuma H, Ito M (2018) Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging 11(1):48–59

    Article  Google Scholar 

  11. Vita T, Grani C, Abbasi SA, Neilan TG, Rowin E, Kaneko K, Coelho-Filho O, Watanabe E, Mongeon FP, Farhad H, Rassi CH, Choi YL, Cheng K, Givertz MM, Blankstein R, Steigner M, Aghayev A, Jerosch-Herold M, Kwong RY (2019) Comparing CMR mapping methods and myocardial patterns toward heart failure outcomes in nonischemic dilated cardiomyopathy. JACC Cardiovasc Imaging 12:1659–1669

    Article  Google Scholar 

  12. Zhuang B, Sirajuddin A, Wang S, Arai A, Zhao S, Lu M (2018) Prognostic value of T1 mapping and extracellular volume fraction in cardiovascular disease: a systematic review and meta-analysis. Heart Fail Rev 23(5):723–731

    Article  Google Scholar 

  13. Nakamori S, Ngo LH, Rodriguez J, Neisius U, Manning WJ, Nezafat R (2020) T1 mapping tissue heterogeneity provides improved risk stratification for ICDs without needing gadolinium in patients with dilated cardiomyopathy. JACC Cardiovasc Imaging 13(9):1917–1930

    Article  Google Scholar 

  14. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1):1-39.e14

    Article  Google Scholar 

  15. Merlo M, Caiffa T, Gobbo M, Adamo L, Sinagra G (2018) Reverse remodeling in dilated cardiomyopathy: insights and future perspectives. Int J Cardiol Heart Vasc 18:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/aha guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136(6):e137–e161

    Article  Google Scholar 

  17. Semelka RC, Tomei E, Wagner S, Mayo J, Kondo C, Suzuki J, Caputo GR, Higgins CB (1990) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174(3 Pt 1):763–768

    Article  CAS  Google Scholar 

  18. Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS, Mulukutla SR, Simon MA, Schelbert EB (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126(10):1206–1216

    Article  Google Scholar 

  19. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  Google Scholar 

  20. Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, Rogers T, Suna G, Arroyo Ucar E, Goodman B, Khan S, Dabir D, Herrmann E, Zeiher AM, Nagel E (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50

    Article  Google Scholar 

  21. Reiter U, Reiter G, Kovacs G, Adelsmayr G, Greiser A, Olschewski H, Fuchsjager M (2017) Native myocardial T1 mapping in pulmonary hypertension: correlations with cardiac function and hemodynamics. Eur Radiol 27(1):157–166

    Article  Google Scholar 

  22. Zhang S, Chiang GC, Magge RS, Fine HA, Ramakrishna R, Chang EW, Pulisetty T, Wang Y, Zhu W, Kovanlikaya I (2019) Texture analysis on conventional MRI images accurately predicts early malignant transformation of low-grade gliomas. Eur Radiol 29(6):2751–2759

    Article  Google Scholar 

  23. Han L, Wang S, Miao Y, Shen H, Guo Y, Xie L, Shang Y, Dong J, Li X, Wang W, Song Q (2019) MRI texture analysis based on 3D tumor measurement reflects the IDH1 mutations in gliomas—A preliminary study. Eur J Radiol 112:169–179

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Masanori Ito, RT and Yuki Yoshimura, and RT for CMR image acquisition.

Funding

Research Grant, Japan Society for the Promotion of Science: Grant-in-Aid for Early-Career Scientists. WAKABA Research Grants, Yokohama Foundation for Advancement of Medical Science, Research Grants for the Development of Young Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Kato.

Ethics declarations

Conflict of interest

Nothing to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, M., Kato, S., Kodama, S. et al. Native T1 heterogeneity for predicting reverse remodeling in patients with non-ischemic dilated cardiomyopathy. Heart Vessels 37, 1541–1550 (2022). https://doi.org/10.1007/s00380-022-02057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-022-02057-4

Keywords

Navigation