Skip to main content
Log in

Impact of the distribution of epicardial and visceral adipose tissue on left ventricular diastolic function

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Although epicardial adipose tissue (EAT) and abdominal visceral adipose tissue (VAT) can contribute to left ventricular diastolic dysfunction (LVDD), the impact of these distribution has not been fully understood. A total of 235 patients who underwent cardiac computed tomography angiography and Doppler echocardiography was included in this study. We evaluated the association of indexed EAT volume and VAT area with septal and lateral early diastolic mitral annular velocity (e′). The VAT area index was significantly associated with septal and lateral e′ velocity after adjusted for conventional cardiovascular risk factors and obstructive coronary artery disease (β-estimate; − 0.015 and − 0.019, both p = 0.01). The natural logarithmic EAT volume index (ln EAT volume index) also showed a significant association with septal and lateral e′ (β-estimate; − 1.72 and − 0.99, both p < 0.01). The significant association of ln EAT volume index with septal and lateral e′ was observed even after adjusting for VAT area index (β-estimate; − 0.79 and − 1.52, both p < 0.03). In the subgroup analysis, there were significant association of ln EAT volume index with both septal and lateral e′ in the lower VAT group (β-estimate; − 1.40 and − 1.53, both p < 0.03) and with lateral e′ in the higher VAT group (β-estimate − 1.64, p = 0.006). In contrast, ln EAT volume index was not associated with septal e′ in the higher VAT group (p = 0.98). EAT accumulation was significantly associated with LVDD independently of obstructive coronary artery disease and abdominal VAT. The impact of EAT on LVDD may vary depending on the amount of abdominal VAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  CAS  PubMed  Google Scholar 

  3. Alpert MA, Karthikeyan K, Abdullah O, Ghadban R (2018) Obesity and cardiac remodeling in adults: mechanisms and clinical implications. Prog Cardiovasc Dis 61:114–123

    Article  PubMed  Google Scholar 

  4. Libhaber CD, Norton GR, Majane OH, Libhaber E, Essop MR, Brooksbank R, Maseko M, Woodiwiss AJ (2009) Contribution of central and general adiposity to abnormal left ventricular diastolic function in a community sample with a high prevalence of obesity. Am J Cardiol 104:1527–1533

    Article  PubMed  Google Scholar 

  5. Canepa M, Strait JB, Abramov D, Milaneschi Y, AlGhatrif M, Moni M, Ramachandran R, Najjar SS, Brunelli C, Abraham TP, Lakatta EG, Ferrucci L (2012) Contribution of central adiposity to left ventricular diastolic function (from the Baltimore Longitudinal Study of Aging). Am J Cardiol 109:1171–1178

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fischer M, Baessler A, Hense HW, Hengstenberg C, Muscholl M, Holmer S, Döring A, Broeckel U, Riegger G, Schunkert H (2003) Prevalence of left ventricular diastolic dysfunction in the community: results from a Doppler echocardiographic-based survey of a population sample. Eur Heart J 24:320–328

    Article  CAS  PubMed  Google Scholar 

  7. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbély A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  8. Yudkin JS, Eringa E, Stehouwer CD (2005) “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet 365:1817–1820

    Article  PubMed  Google Scholar 

  9. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG (2006) Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ohashi N, Yamamoto H, Horiguchi J, Kitagawa T, Kunita E, Utsunomiya H, Oka T, Kohno N, Kihara Y (2010) Association between visceral adipose tissue area and coronary plaque morphology assessed by CT angiography. JACC Cardiovasc Imaging 3:908–917

    Article  PubMed  Google Scholar 

  11. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, Berry JD, Khera A, McGuire DK, Vega GL, Grundy SM, de Lemos JA, Drazner MH (2013) Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging 6:800–807

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirano H, Kanaji Y, Sugiyama T, Hoshino M, Horie T, Misawa T, Nogami K, Ueno H, Hada M, Yamaguchi M, Sumino Y, Hamaya R, Usui E, Murai T, Lee T, Yonetsu T, Kakuta T (2021) Impact of pericoronary adipose tissue inflammation on left ventricular hypertrophy and regional physiological indices in stable coronary artery disease patients with preserved systolic function. Heart Vessels 36:24–37

    Article  PubMed  Google Scholar 

  13. Vural M, Talu A, Sahin D, Elalmis OU, Durmaz HA, Uyanık S, Dolek BA (2014) Evaluation of the relationship between epicardial fat volume and left ventricular diastolic dysfunction. Jpn J Radiol 32:331–339

    Article  PubMed  Google Scholar 

  14. Park HE, Choi SY, Kim M (2014) Association of epicardial fat with left ventricular diastolic function in subjects with metabolic syndrome: assessment using 2-dimensional echocardiography. BMC Cardiovasc Disord 14:3

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nerlekar N, Muthalaly RG, Wong N, Thakur U, Wong DTL, Brown AJ, Marwick TH (2018) Association of volumetric epicardial adipose tissue quantification and cardiac structure and function. J Am Heart Assoc 7:e009975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Oikawa M, Owada T, Yamauchi H, Misaka T, Machii H, Yamaki T, Sugimoto K, Kunii H, Nakazato K, Suzuki H, Saitoh S, Takeishi Y (2015) Epicardial adipose tissue reflects the presence of coronary artery disease: comparison with abdominal visceral adipose tissue. Biomed Res Int 2015:483982

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oka T, Yamamoto H, Ohashi N, Kitagawa T, Kunita E, Utsunomiya H, Yamazato R, Urabe Y, Horiguchi J, Awai K, Kihara Y (2012) Association between epicardial adipose tissue volume and characteristics of non-calcified plaques assessed by coronary computed tomographic angiography. Int J Cardiol 161:45–49

    Article  PubMed  Google Scholar 

  18. Movva R, Murthy K, Romero-Corral A, Seetha Rammohan HR, Fumo P, Pressman GS (2013) Calcification of the mitral valve and annulus: systematic evaluation of effects on valve anatomy and function. J Am Soc Echocardiogr 26:1135–1142

    Article  PubMed  Google Scholar 

  19. International Expert Committee (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32:1327–1334

    Article  Google Scholar 

  20. Ohashi N, Yamamoto H, Horiguchi J, Kitagawa T, Hirai N, Ito K, Kohno N (2009) Visceral fat accumulation as a predictor of coronary artery calcium as assessed by multislice computed tomography in Japanese patients. Atherosclerosis 202:192–199

    Article  CAS  PubMed  Google Scholar 

  21. Senoo A, Kitagawa T, Torimaki S, Yamamoto H, Sentani K, Takahashi S, Kubo Y, Yasui W, Kihara Y (2018) Association between histological features of epicardial adipose tissue and coronary plaque characteristics on computed tomography angiography. Heart Vessels 33:827–836

    Article  PubMed  Google Scholar 

  22. Tsushima H, Yamamoto H, Kitagawa T, Urabe Y, Tatsugami F, Awai K, Kihara Y (2015) Association of epicardial and abdominal visceral adipose tissue with coronary atherosclerosis in patients with a coronary artery calcium score of zero. Circ J 79:1084–1091

    Article  CAS  PubMed  Google Scholar 

  23. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466

    Article  PubMed  Google Scholar 

  24. Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, Higashida M, Mikasa H, Nakaya Y, Takanashi S, Igarashi T, Kitagawa T, Sata M (2011) Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol 58:248–255

    Article  CAS  PubMed  Google Scholar 

  25. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Alexandru Popescu B, Waggoner AD, Houston, Texas; Oslo, Norway; Phoenix, Arizona; Nashville, Tennessee; Hamilton, Ontario, Canada; Uppsala, Sweden; Ghent and Liège, Belgium; Cleveland, Ohio; Novara, Italy; Rochester, Minnesota; Bucharest, Romania; and St. Louis, Missouri (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging 17:1321–1360

    Article  PubMed  Google Scholar 

  26. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplantat 48:452–458

    Article  CAS  Google Scholar 

  27. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  CAS  PubMed  Google Scholar 

  28. Shiba N, Watanabe J, Shinozaki T, Koseki Y, Sakuma M, Kagaya Y, Shirato K, Investigators CHART (2004) Analysis of chronic heart failure registry in the Tohoku district: third year follow-up. Circ J 68:427–434

    Article  PubMed  Google Scholar 

  29. Shiba N, Nochioka K, Miura M, Kohno H, Shimokawa H, CHART-2 Investigators (2011) Trend of westernization of etiology and clinical characteristics of heart failure patients in Japan–first report from the CHART-2 study. Circ J 75:823–833

    Article  PubMed  Google Scholar 

  30. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members; Document Reviewe (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975

    Article  PubMed  Google Scholar 

  31. Tsutsui H, Isobe M, Ito H, Ito H, Okumura K, Ono M, Kitakaze M, Kinugawa K, Kihara Y, Goto Y, Komuro I, Saiki Y, Saito Y, Sakata Y, Sato N, Sawa Y, Shiose A, Shimizu W, Shimokawa H, Seino Y, Node K, Higo T, Hirayama A, Makaya M, Masuyama T, Murohara T, Momomura SI, Yano M, Yamazaki K, Yamamoto K, Yoshikawa T, Yoshimura M, Akiyama M, Anzai T, Ishihara S, Inomata T, Imamura T, Iwasaki YK, Ohtani T, Onishi K, Kasai T, Kato M, Kawai M, Kinugasa Y, Kinugawa S, Kuratani T, Kobayashi S, Sakata Y, Tanaka A, Toda K, Noda T, Nochioka K, Hatano M, Hidaka T, Fujino T, Makita S, Yamaguchi O, Ikeda U, Kimura T, Kohsaka S, Kosuge M, Yamagishi M, Yamashina A, Japanese Circulation Society and the Japanese Heart Failure Society Joint Working Group (2019) JCS 2017/JHFS 2017 Guideline on Diagnosis and Treatment of Acute and Chronic Heart Failure—Digest Version. Circ J 83:2084–2184

    Article  PubMed  Google Scholar 

  32. Blanco R, Ambrosio G, Belziti C, Lucas L, Arias A, D’Antonio A, Oberti P, Carluccio E, Pizarro R (2020) Prognostic value of NT-proBNP, and echocardiographic indices of diastolic function, in hospitalized patients with acute heart failure and preserved left ventricular ejection fraction. Int J Cardiol 317:111–120

    Article  PubMed  Google Scholar 

  33. Kuznetsova T, Herbots L, López B, Jin Y, Richart T, Thijs L, González A, Herregods MC, Fagard RH, Díez J, Staessen JA (2009) Prevalence of left ventricular diastolic dysfunction in a general population. Circ Heart Fail 2:105–112

    Article  PubMed  Google Scholar 

  34. Burroughs Peña M, Swett K, Schneiderman N, Spevack DM, Ponce SG, Talavera GA, Kansal MM, Daviglus ML, Cai J, Hurwitz BE, Llabre MM, Rodriguez CJ (2018) Cardiac structure and function with and without metabolic syndrome: the Echocardiographic Study of Latinos (Echo-SOL). BMJ Open Diabetes Res Care 6:e000484

    Article  PubMed  PubMed Central  Google Scholar 

  35. Canepa M, Strait JB, Milaneschi Y, AlGhatrif M, Ramachandran R, Makrogiannis S, Moni M, David M, Brunelli C, Lakatta EG, Ferrucci L (2013) The relationship between visceral adiposity and left ventricular diastolic function: results from the Baltimore Longitudinal Study of Aging. Nutr Metab Cardiovasc Dis 23:1263–1270

    Article  CAS  PubMed  Google Scholar 

  36. Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, Pahor M, Jingzhong D, Harris TB, Health, Aging and Body Composition Study (2004) Association of visceral adipose tissue with incident myocardial infarction in older men and women: the Health, Aging and Body Composition Study. Am J Epidemiol 160:741–749

    Article  PubMed  Google Scholar 

  37. Britton KA, Massaro JM, Murabito JM, Kreger BE, Hoffmann U, Fox CS (2013) Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J Am Coll Cardiol 62:921–925

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cho DH, Kim MN, Joo HJ, Shim WJ, Lim DS, Park SM (2019) Visceral obesity, but not central obesity, is associated with cardiac remodeling in subjects with suspected metabolic syndrome. Nutr Metab Cardiovasc Dis 29:360–366

    Article  PubMed  Google Scholar 

  39. Nakamori S, Nezafat M, Ngo LH, Manning WJ, Nezafat R (2018) Left atrial epicardial fat volume is associated with atrial fibrillation: a prospective cardiovascular magnetic resonance 3D Dixon Study. J Am Heart Assoc 7:e008232

    Article  PubMed  PubMed Central  Google Scholar 

  40. Topuz M, Dogan A (2017) The effect of epicardial adipose tissue thickness on left ventricular diastolic functions in patients with normal coronary arteries. Kardiol Pol 75:196–203

    Article  PubMed  Google Scholar 

  41. Ansaldo AM, Montecucco F, Sahebkar A, Dallegri F, Carbone F (2019) Epicardial adipose tissue and cardiovascular diseases. Int J Cardiol 278:254–260

    Article  PubMed  Google Scholar 

  42. Maimaituxun G, Yamada H, Fukuda D, Yagi S, Kusunose K, Hirata Y, Nishio S, Soeki T, Masuzaki H, Sata M, Shimabukuro M (2020) Association of local epicardial adipose tissue depots and left ventricular diastolic performance in patients with preserved left ventricular ejection fraction. Circ J 84:203–216

    Article  CAS  PubMed  Google Scholar 

  43. Hasebe H, Yoshida K, Nogami A, Ieda M (2020) Difference in epicardial adipose tissue distribution between paroxysmal atrial fibrillation and coronary artery disease. Heart Vessels 35:1070–1078

    Article  PubMed  Google Scholar 

  44. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA (2018) A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation 138:861–870

    Article  PubMed  PubMed Central  Google Scholar 

  45. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are responsible for the reliability and freedom from bias of the data presented and their discussed interpretations.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroto Utsunomiya.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahari, K., Utsunomiya, H., Itakura, K. et al. Impact of the distribution of epicardial and visceral adipose tissue on left ventricular diastolic function. Heart Vessels 37, 250–261 (2022). https://doi.org/10.1007/s00380-021-01904-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-021-01904-0

Keywords

Navigation