Skip to main content

Advertisement

Log in

Impact of pericoronary adipose tissue inflammation on left ventricular hypertrophy and regional physiological indices in stable coronary artery disease patients with preserved systolic function

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Systemic low-grade inflammation has been shown to be associated with left ventricular hypertrophy (LVH). However, the relationship between pericoronary adipose tissue attenuation (PCATA) and both LVH and regional physiological indices remains unknown. This study aimed to evaluate the association of PCATA with LVH and regional physiological indices in stable coronary artery disease (CAD) patients with preserved systolic function. A total of 114 CAD patients who underwent coronary CT angiography (CTA) and invasive physiological tests showing ischemia due to a single de novo lesion were included in the study. On proximal 40-mm segments of all three major coronary vessels on CTA, PCATA was assessed by the crude analysis of the mean CT attenuation value [− 190 to − 30 Hounsfield units [HU)] and the culprit vessel PCATA was used for the analysis. Regional physiological indices were invasively obtained by pressure–temperature sensor-tipped wire. The patients were divided into three groups by culprit vessel PCATA tertiles, and clinical, CTA-derived, and physiological indices were compared. Univariable and multivariable analyses were further performed to determine the predictors of LVH. Angiographic stenosis severity, culprit lesion locations, culprit vessel fractional flow reserve, coronary flow reserve, index of microcirculatory resistance, total and target vessel coronary calcium score, and biomarkers including high-sensitivity C-reactive protein were not different among the groups. The left ventricular (LV) mass, LV mass index (LVMI), and LV mass at risk were all significantly different in the three groups with the greatest values in the highest tertile group (all, P < 0.05). On multivariable analysis, male gender, NT-proBNP, and PCATA were independent predictors of LVMI. Culprit vessel PCATA was significantly associated with LVMI, but not with regional physiology in CAD patients with functionally significant lesions and preserved systolic function. Our results may offer insight into the pathophysiological mechanisms linking pericoronary inflammation and LVH to worse prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  CAS  Google Scholar 

  2. Hansson GK, Libby P, Tabas I (2015) Inflammation and plaque vulnerability. J Intern Med 278:483–493

    Article  CAS  Google Scholar 

  3. Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–420

    Article  CAS  Google Scholar 

  4. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, Group CT (2017) Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131

    Article  Google Scholar 

  5. Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Hutt Centeno E, Thomas S, Herdman L, Kotanidis CP, Thomas KE, Griffin BP, Flamm SD, Antonopoulos AS, Shirodaria C, Sabharwal N, Deanfield J, Neubauer S, Hopewell JC, Channon KM, Achenbach S, Antoniades C (2018) Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392:929–939

    Article  Google Scholar 

  6. Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli AM, Akoumianakis I, Petrou M, Sayeed R, Krasopoulos G, Psarros C, Ciccone P, Brophy CM, Digby J, Kelion A, Uberoi R, Anthony S, Alexopoulos N, Tousoulis D, Achenbach S, Neubauer S, Channon KM, Antoniades C (2017) Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 9:eaal2658

    Article  Google Scholar 

  7. Verdecchia P, Carini G, Circo A, Dovellini E, Giovannini E, Lombardo M, Solinas P, Gorini M, Maggioni AP, Group MS (2001) Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol 38:1829–1835

    Article  Google Scholar 

  8. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  CAS  Google Scholar 

  9. Mehta SK, Rame JE, Khera A, Murphy SA, Canham RM, Peshock RM, de Lemos JA, Drazner MH (2007) Left ventricular hypertrophy, subclinical atherosclerosis, and inflammation. Hypertension 49:1385–1391

    Article  CAS  Google Scholar 

  10. Johnson NP, Toth GG, Lai D, Zhu H, Acar G, Agostoni P, Appelman Y, Arslan F, Barbato E, Chen SL, Di Serafino L, Dominguez-Franco AJ, Dupouy P, Esen AM, Esen OB, Hamilos M, Iwasaki K, Jensen LO, Jimenez-Navarro MF, Katritsis DG, Kocaman SA, Koo BK, Lopez-Palop R, Lorin JD, Miller LH, Muller O, Nam CW, Oud N, Puymirat E, Rieber J, Rioufol G, Rodes-Cabau J, Sedlis SP, Takeishi Y, Tonino PA, Van Belle E, Verna E, Werner GS, Fearon WF, Pijls NH, De Bruyne B, Gould KL (2014) Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol 64:1641–1654

    Article  Google Scholar 

  11. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, Myers MG, Ogedegbe G, Schwartz JE, Townsend RR, Urbina EM, Viera AJ, White WB, Wright JT Jr (2019) Measurement of blood pressure in humans: a scientific statement from the American Heart Association. Hypertension 73:e35–e66

    CAS  PubMed  Google Scholar 

  12. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, Yock PG, Yeung AC (2003) Novel index for invasively assessing the coronary microcirculation. Circulation 107:3129–3132

    Article  Google Scholar 

  13. De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR (2001) Coronary thermodilution to assess flow reserve: experimental validation. Circulation 104:2003–2006

    Article  Google Scholar 

  14. Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, Whitbourn R, Macisaac A, Kritharides L, Wilson A, Ng MK (2013) Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv 6:53–58

    Article  Google Scholar 

  15. Wakasa N, Kuramochi T, Mihashi N, Terada N, Kanaji Y, Murai T, Lee T, Yonetsu T, Kobashi K, Miyamoto K, Tobata H, Kakuta T (2016) Impact of pressure signal drift on fractional flow reserve-based decision-making for patients with intermediate coronary artery stenosis. Circ J 80:1812–1819

    Article  Google Scholar 

  16. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, Marwan M, Naoum C, Norgaard BL, Rubinshtein R, Schoenhagen P, Villines T, Leipsic J (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449

    Article  Google Scholar 

  17. Fuchs A, Mejdahl MR, Kuhl JT, Stisen ZR, Nilsson EJ, Kober LV, Nordestgaard BG, Kofoed KF (2016) Normal values of left ventricular mass and cardiac chamber volumes assessed by 320-detector computed tomography angiography in the Copenhagen General Population Study. Eur Heart J Cardiovasc Imaging 17:1009–1017

    Article  Google Scholar 

  18. Klein R, Ametepe ES, Yam Y, Dwivedi G, Chow BJ (2017) Cardiac CT assessment of left ventricular mass in mid-diastasis and its prognostic value. Eur Heart J Cardiovasc Imaging 18:95–102

    Article  Google Scholar 

  19. Mao SS, Li D, Rosenthal DG, Cerilles M, Zeb I, Wu H, Flores F, Gao Y, Budoff MJ (2013) Dual-standard reference values of left ventricular volumetric parameters by multidetector CT angiography. J Cardiovasc Comput Tomogr 7:234–240

    Article  Google Scholar 

  20. Fuchs A, Kuhl JT, Lonborg J, Engstrom T, Vejlstrup N, Kober L, Kofoed KF (2012) Automated assessment of heart chamber volumes and function in patients with previous myocardial infarction using multidetector computed tomography. J Cardiovasc Comput Tomogr 6:325–334

    Article  Google Scholar 

  21. Kang SJ, Yang DH, Kweon J, Kim YH, Lee JG, Jung J, Kim N, Mintz GS, Kang JW, Lim TH, Park SW (2016) Better diagnosis of functionally significant intermediate sized narrowings using intravascular ultrasound-minimal lumen area and coronary computed tomographic angiography-based myocardial segmentation. Am J Cardiol 117:1282–1288

    Article  Google Scholar 

  22. Juneau D, Erthal F, Clarkin O, Alzahrani A, Alenazy A, Hossain A, Inacio JR, Dwivedi G, Dick AJ, Rybicki FJ, Chow BJ (2017) Mid-diastolic left ventricular volume and mass: normal values for coronary computed tomography angiography. J Cardiovasc Comput Tomogr 11:135–140

    Article  Google Scholar 

  23. Devereux RB, Wachtell K, Gerdts E, Boman K, Nieminen MS, Papademetriou V, Rokkedal J, Harris K, Aurup P, Dahlof B (2004) Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA 292:2350–2356

    Article  CAS  Google Scholar 

  24. Vakili BA, Okin PM, Devereux RB (2001) Prognostic implications of left ventricular hypertrophy. Am Heart J 141:334–341

    Article  CAS  Google Scholar 

  25. Chambers J (1995) Left ventricular hypertrophy. BMJ 311:273–274

    Article  CAS  Google Scholar 

  26. Sullivan JM, Vander Zwaag RV, El-Zeky F, Ramanathan KB, Mirvis DM (1993) Left ventricular hypertrophy: effect on survival. J Am Coll Cardiol 22:508–513

    Article  CAS  Google Scholar 

  27. Bo S, Mandrile C, Milanesio N, Pagani A, Gentile L, Gambino R, Villois P, Ghinamo L, Canil S, Durazzo M, Cassader M, Cavallo-Perin P (2012) Is left ventricular hypertrophy a low-level inflammatory state? A population-based cohort study. Nutr Metab Cardiovasc Dis 22:668–676

    Article  CAS  Google Scholar 

  28. Tsioufis C, Stougiannos P, Kakkavas A, Toutouza M, Mariolis A, Vlasseros I, Stefanadis C, Kallikazaros I (2005) Relation of left ventricular concentric remodeling to levels of C-reactive protein and serum amyloid A in patients with essential hypertension. Am J Cardiol 96:252–256

    Article  CAS  Google Scholar 

  29. Turiel M, Atzeni F, Tomasoni L, de Portu S, Delfino L, Bodini BD, Longhi M, Sitia S, Bianchi M, Ferrario P, Doria A, De Gennaro CV, Sarzi-Puttini P (2009) Non-invasive assessment of coronary flow reserve and ADMA levels: a case-control study of early rheumatoid arthritis patients. Rheumatology (Oxford) 48:834–839

    Article  CAS  Google Scholar 

  30. Teragawa H, Fukuda Y, Matsuda K, Ueda K, Higashi Y, Oshima T, Yoshizumi M, Chayama K (2004) Relation between C reactive protein concentrations and coronary microvascular endothelial function. Heart 90:750–754

    Article  CAS  Google Scholar 

  31. Vaccarino V, Khan D, Votaw J, Faber T, Veledar E, Jones DP, Goldberg J, Raggi P, Quyyumi AA, Bremner JD (2011) Inflammation is related to coronary flow reserve detected by positron emission tomography in asymptomatic male twins. J Am Coll Cardiol 57:1271–1279

    Article  Google Scholar 

  32. van de Hoef TP, Echavarria-Pinto M, van Lavieren MA, Meuwissen M, Serruys PW, Tijssen JG, Pocock SJ, Escaned J, Piek JJ (2015) Diagnostic and prognostic implications of coronary flow capacity: a comprehensive cross-modality physiological concept in ischemic heart disease. JACC Cardiovasc Interv 8:1670–1680

    Article  Google Scholar 

  33. Johnson NP, Kirkeeide RL, Gould KL (2012) Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 5:193–202

    Article  Google Scholar 

  34. Ehara S, Shirai N, Okuyama T, Matsumoto K, Matsumura Y, Yoshiyama M (2011) Absence of left ventricular concentric hypertrophy: a prerequisite for zero coronary calcium score. Heart Vessels 26:487–494

    Article  Google Scholar 

  35. Tahara N, Imaizumi T, Virmani R, Narula J (2009) Clinical feasibility of molecular imaging of plaque inflammation in atherosclerosis. J Nucl Med 50:331–334

    Article  CAS  Google Scholar 

  36. Ge CJ, Lu SZ, Chen YD, Wu XF, Hu SJ, Ji Y (2008) Synergistic effect of amlodipine and atorvastatin on blood pressure, left ventricular remodeling, and C-reactive protein in hypertensive patients with primary hypercholesterolemia. Heart Vessels 23:91–95

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsunekazu Kakuta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, H., Kanaji, Y., Sugiyama, T. et al. Impact of pericoronary adipose tissue inflammation on left ventricular hypertrophy and regional physiological indices in stable coronary artery disease patients with preserved systolic function. Heart Vessels 36, 24–37 (2021). https://doi.org/10.1007/s00380-020-01658-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-020-01658-1

Keywords

Navigation