Skip to main content
Log in

Absence of left ventricular concentric hypertrophy: a prerequisite for zero coronary calcium score

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The identification and intervention of factors associated with a coronary artery calcification (CAC) score of zero, suggesting the absence of significant coronary artery disease (CAD) with high probability, would be meaningful in the clinical setting. Thus far, the relationship between CAC and left ventricular (LV) hypertrophy has not been documented. We identified factors associated with a CAC score of zero and evaluated the relationship between this score and LV concentric hypertrophy in 309 consecutive patients with suspected CAD who were clinically indicated to undergo multislice computed tomography angiography for coronary artery evaluation. The quantitative CAC score was calculated according to Agatston’s method. The total coronary calcium score (TCS) was defined as the sum of the scores for each lesion. Four absolute TCS categories were considered: zero, mild (0–100), moderate (100–400), and severe (>400). LV hypertrophy was classified into concentric (LV mass index >104 g/m2 in women or >116 g/m2 in men; LV end-diastolic volume index ≤109.2 mL/m2) and eccentric (LV end-diastolic volume index >109.2 mL/m2) patterns. In the zero-TCS group, the frequency of LV concentric hypertrophy was extremely low (zero 6%, mild 17%, moderate 26%, severe 19%). Multivariate analysis revealed that age, hypercholesterolemia, diabetes mellitus, LV concentric hypertrophy, and LV mass index, but not hypertension, were the independent factors associated with a CAC score of zero. The present study demonstrated that the absence of LV concentric hypertrophy was a prerequisite for a CAC score of zero. That is, the presence of LV concentric hypertrophy, which indicated more severe underlying hypertension, long duration, or poor control of blood pressure, implicates the presence of CAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EBCT:

Electron-beam computed tomography

MSCT:

Multislice computed tomography

CAC:

Coronary artery calcification

CAD:

Coronary artery disease

LV:

Left ventricular

SD:

Standard deviation

BMI:

Body mass index

TCS:

Total coronary calcium score

EDV:

End-diastolic volume

ESV:

End-systolic volume

LA:

Left atrial

CI:

Confidence interval

References

  1. Simons DB, Schwartz RS, Edwards WD, Sheedy PF, Breen JF, Rumberger JA (1992) Noninvasive definition of anatomic coronary artery disease by ultrafast computed tomographic scanning: a quantitative pathologic comparison study. J Am Coll Cardiol 20:1118–1126

    Article  PubMed  CAS  Google Scholar 

  2. Mautner GC, Mautner SL, Froehlich J, Feuerstein IM, Proschan MA, Roberts WC, Doppman JL (1994) Coronary artery calcification: assessment with electron beam CT and histomorphometric correlation. Radiology 192:619–623

    PubMed  CAS  Google Scholar 

  3. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    PubMed  CAS  Google Scholar 

  4. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J, Fitzpatrick LA, Schwartz RS (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133

    Article  PubMed  CAS  Google Scholar 

  5. Keelan PC, Bielak LF, Ashai K, Jamjoum LS, Denktas AE, Rumberger JA, Sheedy PF II, Peyser PA, Schwartz RS (2001) Long-term prognostic value of coronary calcification detected by electron-beam computed tomography in patients undergoing coronary angiography. Circulation 104:412–417

    Article  PubMed  CAS  Google Scholar 

  6. Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD (1996) Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects. Circulation 93:1951–1953

    PubMed  CAS  Google Scholar 

  7. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576

    Article  PubMed  Google Scholar 

  8. Devries S, Wolfkiel C, Fusman B, Bakdash H, Ahmed A, Levy P, Chomka E, Kondos G, Zajac E, Rich S (1995) Influence of age and gender on the presence of coronary calcium detected by ultrafast computed tomography. J Am Coll Cardiol 25:76–82

    Article  PubMed  CAS  Google Scholar 

  9. Haberl R, Becker A, Leber A, Knez A, Becker C, Lang C, Brüning R, Reiser M, Steinbeck G (2001) Correlation of coronary calcification and angiographically documented stenoses in patients with suspected coronary artery disease: results of 1, 764 patients. J Am Coll Cardiol 37:451–457

    Article  PubMed  CAS  Google Scholar 

  10. Ho JS, Fitzgerald SJ, Stolfus LL, Wade WA, Reinhardt DB, Barlow CE, Cannaday JJ (2008) Relation of a coronary artery calcium score higher than 400 to coronary stenoses detected using multidetector computed tomography and to traditional cardiovascular risk factors. Am J Cardiol 101:1444–1447

    Article  PubMed  CAS  Google Scholar 

  11. Detrano R, Hsiai T, Wang S, Puentes G, Fallavollita J, Shields P, Stanford W, Wolfkiel C, Georgiou D, Budoff M, Reed J (1996) Prognostic value of coronary calcification and angiographic stenoses in patients undergoing coronary angiography. J Am Coll Cardiol 27:285–290

    Article  PubMed  CAS  Google Scholar 

  12. Janowitz WR, Agatston AS, Kaplan G, Viamonte M Jr (1993) Differences in prevalence and extent of coronary artery calcium detected by ultrafast computed tomography in asymptomatic men and women. Am J Cardiol 72:247–254

    Article  PubMed  CAS  Google Scholar 

  13. Rumberger JA, Sheedy PF 3rd, Breen JF, Schwartz RS (1995) Coronary calcium, as determined by electron beam computed tomography, and coronary disease on arteriogram. Effect of patient’s sex on diagnosis. Circulation 91:1363–1367

    PubMed  CAS  Google Scholar 

  14. Newman AB, Naydeck B, Sutton-Tyrrell K, Edmundowicz D, Gottdiener J, Kuller LH (2000) Coronary artery calcification in older adults with minimal clinical or subclinical cardiovascular disease. J Am Geriatr Soc 48:256–263

    PubMed  CAS  Google Scholar 

  15. Goel M, Wong ND, Eisenberg H, Hagar J, Kelly K, Tobis JM (1992) Risk factor correlates of coronary calcium as evaluated by ultrafast computed tomography. Am J Cardiol 70:977–980

    Article  PubMed  CAS  Google Scholar 

  16. Iwasaki K, Matsumoto T, Aono H, Furukawa H, Nagamachi K, Samukawa M (2010) Distribution of coronary atherosclerosis in patients with coronary artery disease. Heart Vessels 25:14–18

    Article  PubMed  Google Scholar 

  17. Raggi P, Boulay A, Chasan-Taber S, Amin N, Dillon M, Burke SK, Chertow GM (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39:695–701

    Article  PubMed  Google Scholar 

  18. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  19. Mühlenbruch G, Das M, Hohl C, Wildberger JE, Rinck D, Flohr TG, Koos R, Knackstedt C, Günther RW, Mahnken AH (2006) Global left ventricular function in cardiac CT. Evaluation of an automated 3D region-growing segmentation algorithm. Eur Radiol 16:1117–1123

    Article  PubMed  Google Scholar 

  20. Okuyama T, Ehara S, Shirai N, Sugioka K, Ogawa K, Oe H, Kitamura H, Itoh T, Otani K, Matsuoka T, Inoue Y, Ueda M, Hozumi T, Yoshiyama M (2008) Usefulness of three-dimensional automated quantification of left ventricular mass, volume, and function by 64-slice computed tomography. J Cardiol 52:276–284

    Article  PubMed  Google Scholar 

  21. Takagi Y, Ehara S, Okuyama T, Shirai N, Yamashita H, Sugioka K, Kitamura H, Ujino K, Hozumi T, Yoshiyama M (2009) Comparison of determinations of left atrial volume by the biplane area-length and Simpson’s methods using 64-slice computed tomography. J Cardiol 53:257–264

    Article  PubMed  Google Scholar 

  22. Bastarrika G, Arraiza M, Pueyo JC, Herraiz MJ, Zudaire B, Villanueva A (2008) Quantification of left ventricular function and mass in cardiac dual-source CT (DSCT) exams: comparison of manual and semiautomatic segmentation algorithms. Eur Radiol 18:939–946

    Google Scholar 

  23. Mahnken AH, Mühlenbruch G, Koos R, Stanzel S, Busch PS, Niethammer M, Günther RW, Wildberger JE (2006) Automated vs. manual assessment of left ventricular function in cardiac multidetector row computed tomography: comparison with magnetic resonance imaging. Eur Radiol 16:1416–1423

    Article  PubMed  Google Scholar 

  24. Heckerling PS, Wiener SL, Wolfkiel CJ, Kushner MS, Dodin EM, Jelnin V, Fusman B, Chomka EV (1993) Accuracy and reproducibility of precordial percussion and palpation for detecting increased left ventricular end-diastolic volume and mass. A comparison of physical findings and ultrafast computed tomography of the heart. JAMA 270:1943–1948

    Article  PubMed  CAS  Google Scholar 

  25. Okin PM, Devereux RB, Nieminen MS, Jern S, Oikarinen L, Viitasalo M, Toivonen L, Kjeldsen SE, Julius S, Dahlöf B (2001) Relationship of the electrocardiographic strain pattern to left ventricular structure and function in hypertensive patients: the LIFE study. Losartan Intervention For End point. J Am Coll Cardiol 38:514–520

    Article  PubMed  CAS  Google Scholar 

  26. Vandenberg BF, Weiss RM, Kinzey J, Acker M, Stark CA, Stanford W, Burns TL, Marcus ML, Kerber RE (1995) Comparison of left atrial volume by two-dimensional echocardiography and cine-computed tomography. Am J Cardiol 75:754–757

    Article  PubMed  CAS  Google Scholar 

  27. Levy D, Garrison R, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  PubMed  CAS  Google Scholar 

  28. Sipahi I, Tuzcu M, Schoenhagen P, Wolski KE, Nicholls SJ, Balog C, Crowe TD, Nissen SE (2006) Effects of normal, pre-hypertensive, and hypertensive blood pressure levels on progression of coronary atherosclerosis. J Am Coll Cardiol 48:833–838

    Article  PubMed  Google Scholar 

  29. Kronmal RA, McClelland RL, Detrano R, Shea S, Lima JA, Cushman M, Bild DE, Burke GL (2007) Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 115:2722–2730

    Article  PubMed  Google Scholar 

  30. Barrios V, Escobar C, Calderón A, Barrios S, Navarro-Cid J, Ferrer E, Echarri R (2010) Gender differences in the diagnosis and treatment of left ventricular hypertrophy detected by different electrocardiographic criteria. Findings from the SARA study. Heart Vessels 25:51–56

    Article  PubMed  Google Scholar 

  31. Gottlieb I, Miller JM, Arbab-Zadeh A, Dewey M, Clouse ME, Sara L, Niinuma H, Bush DE, Paul N, Vavere AL, Texter J, Brinker J, Lima JA, Rochitte CE (2010) The absence of coronary calcification does not exclude obstructive coronary artery disease or the need for revascularization in patients referred for conventional coronary angiography. J Am Coll Cardiol 55:627–634

    Article  PubMed  CAS  Google Scholar 

  32. Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, Zelinger A, Mahmarian JJ (2000) Identification of patients at increased risk of first unhealed acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichi Ehara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehara, S., Shirai, N., Okuyama, T. et al. Absence of left ventricular concentric hypertrophy: a prerequisite for zero coronary calcium score. Heart Vessels 26, 487–494 (2011). https://doi.org/10.1007/s00380-010-0082-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0082-4

Keywords

Navigation