Skip to main content
Log in

Long-term effects of L- and N-type calcium channel blocker on uric acid levels and left atrial volume in hypertensive patients

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Left ventricular (LV) diastolic dysfunction is associated with hypertension and hyperuricemia. However, it is not clear whether the L- and N-type calcium channel blocker will improve LV diastolic dysfunction through the reduction of uric acid. The aim of this study was to investigate the effects of anti-hypertensive therapy, the L- and N-type calcium channel blocker, cilnidipine or the L-type calcium channel blocker, amlodipine, on left atrial reverse remodeling and uric acid in hypertensive patients. We studied 62 patients with untreated hypertension, randomly assigned to cilnidipine or amlodipine for 48 weeks. LV diastolic function was assessed with the left atrial volume index (LAVI), mitral early diastolic wave (E), tissue Doppler early diastolic velocity (E′) and the ratio (E/E′). Serum uric acid levels were measured before and after treatment. After treatment, systolic and diastolic blood pressures equally dropped in both groups. LAVI, E/E′, heart rate and uric acid levels decreased at 48 weeks in the cilnidipine group but not in the amlodipine group. The % change from baseline to 48 weeks in LAVI, E wave, E/E′ and uric acid levels were significantly lower in the cilnidipine group than in the amlodipine group. Larger %-drop in uric acid levels were associated with larger %-reduction of LAVI (p < 0.01). L- and N-type calcium channel blocker but not L-type calcium channel blocker may improve LV diastolic function in hypertensive patients, at least partially through the decrease in uric acid levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CCB:

Calcium channel blocker

UA:

Uric acid

LAV:

Left atrial volume

LV:

Left ventricular

RAS:

Renin–angiotensin system

SBP:

Systolic blood pressure

DBP:

Diastolic blood pressure

LAVI:

Left atrial volume index

LVMI:

Left ventricular mass index

RWT:

Relative wall thickness

E :

Peak velocities of early diastolic phase

A :

Late diastolic phase of mitral inflow

E′ :

Mitral annulus velocities

HR:

Heart rate

LAD:

Left atrial diameter

LVEDD:

Left ventricular end-diastolic diameter

LVESD:

Left ventricular end-systolic diameter

LVEF:

Left ventricular ejection fraction

LVMI:

Left ventricular mass index

DT:

Deceleration time

References

  1. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB (2002) Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol 90:1284–1289

    Article  PubMed  Google Scholar 

  2. Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM (2005) Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol 45:87–92

    Article  PubMed  Google Scholar 

  3. Dahlof B, Pennert K, Hansson L (1992) Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens 5:95–110

    CAS  PubMed  Google Scholar 

  4. Grossman W (1991) Diastolic dysfunction in congestive heart failure. N Engl J Med 325:1557–1564

    Article  CAS  PubMed  Google Scholar 

  5. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part II: causal mechanisms and treatment. Circulation 105:1503–1508

    Article  PubMed  Google Scholar 

  6. Bergamini C, Cicoira M, Rossi A, Vassanelli C (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11:444–452

    Article  CAS  PubMed  Google Scholar 

  7. Takatsu M, Hattori T, Murase T, Ohtake M, Kato M, Nashima K, Nakashima C, Takahashi K, Ito H, Niinuma K, Aritomi S, Murohara T, Nagata K (2012) Comparison of the effects of cilnidipine and amlodipine on cardiac remodeling and diastolic dysfunction in Dahl salt-sensitive rats. J Hypertens 30:1845–1855

    Article  CAS  PubMed  Google Scholar 

  8. Sakata K, Shirotani M, Yoshida H, Nawada R, Obayashi K, Togi K, Miho N (1999) Effects of amlodipine and cilnidipine on cardiac sympathetic nervous system and neurohormonal status in essential hypertension. Hypertension 33:1447–1452

    Article  CAS  PubMed  Google Scholar 

  9. Sakata K, Yoshida H, Tamekiyo H, Obayashi K, Nawada R, Doi O, Mori N (2003) Comparative effect of clinidipine and quinapril on left ventricular mass in mild essential hypertension. Drugs Exp Clin Res 29:117–123

    CAS  PubMed  Google Scholar 

  10. Soeki T, Kitani M, Kusunose K, Yagi S, Taketani Y, Koshiba K, Wakatsuki T, Orino S, Kawano K, Sata M (2012) Renoprotective and antioxidant effects of cilnidipine in hypertensive patients. Hypertens Res 35:1058–1062

    Article  CAS  PubMed  Google Scholar 

  11. Oda E (2014) Serum uric acid is an independent predictor of metabolic syndrome in a Japanese health screening population. Heart Vessels 29:496–503

    Article  PubMed  Google Scholar 

  12. Kawada T, Andou T, Fukumitsu M (2015) Metabolic syndrome showed significant relationship with carotid atherosclerosis. Heart Vessels. doi:10.1007/s00380-015-0668-y

    Google Scholar 

  13. Hamada T, Yamada K, Mizuta E, Watanabe A, Osaki T, Ishida K, Hasegawa A, Sakata S, Mishima M, Ogino K, Nosaka Y, Miyazaki S, Ohtahara A, Ninomiya H, Kato M, Yoshida A, Taniguchi S, Yamamoto K, Hisatome I (2012) Effects of cilnidipine on serum uric acid level and urinary nitrogen monoxide excretion in patients with hypertension. Clin Exp Hypertens 34:470–473

    Article  CAS  PubMed  Google Scholar 

  14. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, Gutgesell H, Reichek N, Sahn D, Schnittger I, Silverman N, Tajik A (1989) Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J Am Soc Echocardiogr 2:358–367

    Article  CAS  PubMed  Google Scholar 

  15. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18:1440–1463

    Article  PubMed  Google Scholar 

  16. Yoshida C, Goda A, Naito Y, Nakaboh A, Matsumoto M, Otsuka M, Ohyanagi M, Hirotani S, Lee-Kawabata M, Tsujino T, Masuyama T (2011) Role of plasma aldosterone concentration in regression of left-ventricular mass following antihypertensive medication. J Hypertens 29:357–363

    Article  CAS  PubMed  Google Scholar 

  17. Takemoto Y, Barnes ME, Seward JB, Lester SJ, Appleton CA, Gersh BJ, Bailey KR, Tsang TS (2005) Usefulness of left atrial volume in predicting first congestive heart failure in patients > or = 65 years of age with well-preserved left ventricular systolic function. Am J Cardiol 96:832–836

    Article  PubMed  Google Scholar 

  18. Gottdiener JS, Kitzman DW, Aurigemma GP, Arnold AM, Manolio TA (2006) Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or = 65 years of age (the cardiovascular health study). Am J Cardiol 97:83–89

    Article  PubMed  Google Scholar 

  19. Zile MR, Gottdiener JS, Hetzel SJ, McMurray JJ, Komajda M, McKelvie R, Baicu CF, Massie BM, Carson PE (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124:2491–2501

    Article  PubMed  Google Scholar 

  20. Vaziri SM, Larson MG, Benjamin EJ, Levy D (1994) Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 89:724–730

    Article  CAS  PubMed  Google Scholar 

  21. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D (1995) Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation 92:835–841

    Article  CAS  PubMed  Google Scholar 

  22. Tsang MY, Barnes ME, Tsang TS (2012) Left atrial volume: clinical value revisited. Curr Cardiol Rep 14:374–380

    Article  PubMed  Google Scholar 

  23. Douglas PS (2003) The left atrium: a biomarker of chronic diastolic dysfunction and cardiovascular disease risk. J Am Coll Cardiol 42:1206–1207

    Article  PubMed  Google Scholar 

  24. Raman SV (2010) The hypertensive heart. An integrated understanding informed by imaging. J Am Coll Cardiol 55:91–96

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kosaka T, Nakagawa M, Ishida M, Iino K, Watanabe H, Hasegawa H, Ito H (2009) Cardioprotective effect of an L/N-type calcium channel blocker in patients with hypertensive heart disease. J Cardiol 54:262–272

    Article  PubMed  Google Scholar 

  26. Kobayashi N, Mori Y, Mita S, Nakano S, Kobayashi T, Tsubokou Y, Matsuoka H (2001) Effects of cilnidipine on nitric oxide and endothelin-1 expression and extracellular signal-regulated kinase in hypertensive rats. Eur J Pharmacol 422:149–157

    Article  CAS  PubMed  Google Scholar 

  27. Konda T, Enomoto A, Aritomi S, Niinuma K, Koganei H, Ogawa T, Nitta K (2009) Different effects of L/N-type and L-type calcium channel blockers on the renin–angiotensin–aldosterone system in SHR/Izm. Am J Nephrol 30:155–161

    Article  CAS  PubMed  Google Scholar 

  28. Takahara A, Nakamura Y, Wagatsuma H, Aritomi S, Nakayama A, Satoh Y, Akie Y, Sugiyama A (2009) Long-term blockade of L/N-type Ca(2+) channels by cilnidipine ameliorates repolarization abnormality of the canine hypertrophied heart. Br J Pharmacol 158:1366–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan YY, Kohno M, Nakano D, Ohsaki H, Kobori H, Suwarni D, Ohashi N, Hitomi H, Asanuma K, Noma T, Tomino Y, Fujita T, Nishiyama A (2010) Cilnidipine suppresses podocyte injury and proteinuria in metabolic syndrome rats: possible involvement of N-type calcium channel in podocyte. J Hypertens 28:1034–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aritomi S, Konda T, Yoshimura M (2012) L/N-type calcium channel blocker suppresses reflex aldosterone production induced by antihypertensive action. Heart Vessels 27:419–423

    Article  PubMed  Google Scholar 

  31. Nishida M, Ishikawa T, Saiki S, Sunggip C, Aritomi S, Harada E, Kuwahara K, Hirano K, Mori Y, Kim-Mitsuyama S (2013) Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochem Biophys Res Commun 434:210–216

    Article  CAS  PubMed  Google Scholar 

  32. Lefrandt JD, Heitmann J, Sevre K, Castellano M, Hausberg M, Fallon M, Fluckiger L, Urbigkeit A, Rostrup M, Agabiti-Rosei E, Rahn KH, Murphy M, Zannad F, de Kam PJ, van Roon AM, Smit AJ (2001) The effects of dihydropyridine and phenylalkylamine calcium antagonist classes on autonomic function in hypertension: the VAMPHYRE study. Am J Hypertens 14:1083–1089

    Article  CAS  PubMed  Google Scholar 

  33. Struck J, Muck P, Trubger D, Handrock R, Weidinger G, Dendorfer A, Dodt C (2002) Effects of selective angiotensin II receptor blockade on sympathetic nerve activity in primary hypertensive subjects. J Hypertens 20:1143–1149

    Article  CAS  PubMed  Google Scholar 

  34. Nishimura RA, Schwartz RS, Holmes DR Jr, Tajik AJ (1993) Failure of calcium channel blockers to improve ventricular relaxation in humans. J Am Coll Cardiol 21:182–188

    Article  CAS  PubMed  Google Scholar 

  35. Chao TF, Hung CL, Chen SJ, Wang KL, Chen TJ, Lin YJ, Chang SL, Lo LW, Hu YF, Tuan TC, Chen SA (2013) The association between hyperuricemia, left atrial size and new-onset atrial fibrillation. Int J Cardiol 168:4027–4032

    Article  PubMed  Google Scholar 

  36. Hoeper MM, Hohlfeld JM, Fabel H (1999) Hyperuricaemia in patients with right or left heart failure. Eur Respir J 13:682–685

    Article  CAS  PubMed  Google Scholar 

  37. Feig DI, Soletsky B, Johnson RJ (2008) Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 300:924–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Culleton BF, Larson MG, Kannel WB, Levy D (1999) Serum uric acid and risk for cardiovascular disease and death: the Framingham Heart Study. Ann Intern Med 131:7–13

    Article  CAS  PubMed  Google Scholar 

  39. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742

    Article  PubMed  Google Scholar 

  40. Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ (2013) The role of uric acid in the pathogenesis of human cardiovascular disease. Heart 99:759–766

    Article  CAS  PubMed  Google Scholar 

  41. Pan KL, Lin JC, Lin CL, Chen MC, Chang PJ, Hsiao JF, Chang ST, Chung CM (2014) The effects of gout on left atrial volume remodelling: a prospective echocardiographic study. Rheumatology (Oxford) 53:867–874

    Article  Google Scholar 

  42. Nishino M, Mori N, Yoshimura T, Nakamura D, Lee Y, Taniike M, Makino N, Kato H, Egami Y, Shutta R, Tanouchi J, Yamada Y (2014) Higher serum uric acid and lipoprotein(a) are correlated with coronary spasm. Heart Vessels 29:186–190

    Article  PubMed  Google Scholar 

  43. Kanellis J, Watanabe S, Li JH, Kang DH, Li P, Nakagawa T, Wamsley A, Sheikh-Hamad D, Lan HY, Feng L, Johnson RJ (2003) Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension 41:1287–1293

    Article  CAS  PubMed  Google Scholar 

  44. Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372:285–294

    Article  CAS  PubMed  Google Scholar 

  45. Abuja PM (1999) Ascorbate prevents prooxidant effects of urate in oxidation of human low density lipoprotein. FEBS Lett 446:305–308

    Article  CAS  PubMed  Google Scholar 

  46. Verdecchia P, Schillaci G, Reboldi G, Santeusanio F, Porcellati C, Brunetti P (2000) Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA study. Hypertension 36:1072–1078

    Article  CAS  PubMed  Google Scholar 

  47. Sugihara S, Hisatome I, Kuwabara M, Niwa K, Maharani N, Kato M, Ogino K, Hamada T, Ninomiya H, Higashi Y, Ichida K, Yamamoto K (2015) Depletion of uric acid due to SLC22A12 (URAT1) loss-of-function mutation causes endothelial dysfunction in hypouricemia. Circ J 79:1125–1132

    Article  PubMed  Google Scholar 

  48. Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA 78:6858–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waring WS, Webb DJ, Maxwell SR (2001) Systemic uric acid administration increases serum antioxidant capacity in healthy volunteers. J Cardiovasc Pharmacol 38:365–371

    Article  CAS  PubMed  Google Scholar 

  50. Waring WS, McKnight JA, Webb DJ, Maxwell SR (2006) Uric acid restores endothelial function in patients with type 1 diabetes and regular smokers. Diabetes 55:3127–3132

    Article  CAS  PubMed  Google Scholar 

  51. Uchida S, Takahashi M, Sugawara M, Saito T, Nakai K, Fujita M, Mochizuki K, Shin I, Morita T, Hikita T, Itakura H, Takahashi Y, Mizuno S, Ohno Y, Ito K, Ito T, Soma M (2014) Effects of the N/L-type calcium channel blocker cilnidipine on nephropathy and uric acid metabolism in hypertensive patients with chronic kidney disease (J-CIRCLE study). J Clin Hypertens (Greenwich) 16:746–753

    Article  CAS  Google Scholar 

  52. Aritomi S, Wagatsuma H, Numata T, Uriu Y, Nogi Y, Mitsui A, Konda T, Mori Y, Yoshimura M (2011) Expression of N-type calcium channels in human adrenocortical cells and their contribution to corticosteroid synthesis. Hypertens Res 34:193–201

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. M. Tanaka, S. Makihara and C. Misumi for their excellent technical assistance in the acquisition of echocardiographic tracings. This work was supported by a Grant-in-Aid for Researchers, Hyogo College of Medicine, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Mano.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masaki, M., Mano, T., Eguchi, A. et al. Long-term effects of L- and N-type calcium channel blocker on uric acid levels and left atrial volume in hypertensive patients. Heart Vessels 31, 1826–1833 (2016). https://doi.org/10.1007/s00380-016-0796-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-016-0796-z

Keywords

Navigation