Skip to main content

Advertisement

Log in

Differences in ward-to-cath lab systolic blood pressure predicts long-term adverse outcomes after drug-eluting stent implantation

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We sought to investigate the effect of ward-to-cath lab blood pressure (BP) differences on long-term clinical outcomes in patients undergoing percutaneous coronary intervention (PCI) with drug-eluting stent (DES). There are limited data available on the association between PCI with DES and BP differences on long-term clinical outcomes. This study enrolled 994 patients who underwent PCI with DES from March 2003 to August 2007. Resting BP was measured in a ward environment before transfer to the cardiac catheterization lab (cath lab), and again when the patient was laid down on the cath lab table. Patients were divided into two groups according to the difference in ward-to-cath lab systolic BP. Large difference group (n = 383) was defined as the absolute systolic difference of >20 mmHg and small difference group (n = 424) as the absolute systolic difference of ≤20 mmHg. The primary endpoints were all-cause mortality, cardiac death, nonfatal myocardial infarction and stroke. A total of 807 patients (mean age 60 ± 10 years, 522 males) received follow-up for 5.1 ± 2.4 years. The rate of all-cause mortality was significantly higher in the large difference group compared to the small difference group (6.6 vs. 2.8 %; adjusted hazard ratio (HR) 2.43; 95 % confidence interval (CI) 1.22–4.83; p = 0.012). There were higher cardiac deaths seen in the large difference group compared to the small difference group (3.9 vs. 1.4 %; adjusted HR 2.84; 95 % CI 1.1–7.31; p = 0.031). Stroke (2.4 vs. 1.2 %, p = 0.125) and TVR (3.7 vs. 1.7 %, p = 0.051) had higher trends in the large difference group compared to the small difference group. The composite of primary endpoints (all-cause mortality, cardiac death, nonfatal MI and stroke) occurred more frequently in the large difference group compared to the small difference group (10.0 vs. 6.4 %; adjusted HR 1.71; 95 % CI 1.04–2.81; p = 0.033). A difference in ward-to-cath lab systolic BP of >20 mmHg may contribute to increased adverse outcomes in the form of all-cause mortality and cardiac deaths in patients undergoing PCI with DES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cheung AT (2006) Exploring an optimum intra/postoperative management strategy for acute hypertension in the cardiac surgery patient. J Card Surg 21(Suppl 1):S8–S14

    Article  PubMed  Google Scholar 

  2. Aronson S, Boisvert D, Lapp W (2002) Isolated systolic hypertension is associated with adverse outcomes from coronary artery bypass grafting surgery. Anesth Analg 94(5):1079–1084

    Article  PubMed  Google Scholar 

  3. Aronson S, Stafford-Smith M, Phillips-Bute B, Shaw A, Gaca J, Newman M (2010) Cardiothoracic anesthesiology research endeavors intraoperative systolic blood pressure variability predicts 30-day mortality in aortocoronary bypass surgery patients. Anesthesiology 113(2):305–312

    Article  CAS  PubMed  Google Scholar 

  4. Howell SJ, Sear JW, Foex P (2004) Hypertension, hypertensive heart disease and perioperative cardiac risk. Br J Anaesth 92(4):570–583

    Article  CAS  PubMed  Google Scholar 

  5. Gottesman RF, Hillis AE, Grega MA, Borowicz LM Jr, Selnes OA, Baumgartner WA, McKhann GM (2007) Early postoperative cognitive dysfunction and blood pressure during coronary artery bypass graft operation. Arch Neurol 64(8):1111–1114

    Article  PubMed  Google Scholar 

  6. Cernaianu AC, Vassilidze TV, Flum DR, Maurer M, Cilley JH Jr, Grosso MA, DelRossi AJ (1995) Predictors of stroke after cardiac surgery. J Card Surg 10(4 Pt 1):334–339

    Article  CAS  PubMed  Google Scholar 

  7. Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F, Costa B, Scherz R, Bond G, Zanchetti A (2001) ELSA investigators relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European lacidipine study on atherosclerosis (ELSA). J Hypertens 19(11):1981–1989

    Article  CAS  PubMed  Google Scholar 

  8. Cay S, Cagirci G, Demir AD, Balbay Y, Erbay AR, Aydogdu S, Maden O (2011) Ambulatory blood pressure variability is associated with restenosis after percutaneous coronary intervention in normotensive patients. Atherosclerosis 219(2):951–957

    Article  CAS  PubMed  Google Scholar 

  9. Jones A, Steeden JA, Pruessner JC, Deanfield JE, Taylor AM, Muthurangu V (2011) Detailed assessment of the hemodynamic response to psychosocial stress using real-time MRI. J Magn Reson Imaging 33(2):448–454

    Article  PubMed  Google Scholar 

  10. Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. Eur Heart J 28(20):2525–2538

    Article  PubMed  Google Scholar 

  11. Kario K, Schwartz JE, Gerin W, Robayo N, Maceo E, Pickering TG (2002) Psychological and physical stress-induced cardiovascular reactivity and diurnal blood pressure variation in women with different work shifts. Hypertens Res 25(4):543–551

    Article  PubMed  Google Scholar 

  12. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, Ferrario M, Mancia G (2002) Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension 39(2 Pt 2):710–714

    Article  CAS  PubMed  Google Scholar 

  13. Veerman DP, de Blok K, van Montfrans A (1996) Relationship of steady state and ambulatory blood pressure variability to left ventricular mass and urinary albumin excretion in essential hypertension. Am J Hypertens 9(5):455–460

    Article  CAS  PubMed  Google Scholar 

  14. Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, Ota M, Nagai K, Araki T, Satoh H, Ito S, Hisamichi S, Imai Y (2000) Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension 36(5):901–906

    Article  CAS  PubMed  Google Scholar 

  15. Estafanous FG, Tarazi RC (1980) Systemic arterial hypertension associated with cardiac surgery. Am J Cardiol 46(4):685–694

    Article  CAS  PubMed  Google Scholar 

  16. Granger DN (1999) Ischemia-reperfusion: mechanisms of microvascular dysfunction and the influence of risk factors for cardiovascular disease. Microcirculation 6(3):167–178

    Article  CAS  PubMed  Google Scholar 

  17. Herskowitz A, Mangano DT (1996) Inflammatory cascade. A final common pathway for perioperative injury? Anesthesiology 85(5):957–960

    Article  CAS  PubMed  Google Scholar 

  18. Hennein HA, Ebba H, Rodriguez JL, Merrick SH, Keith FM, Bronstein MH, Leung JM, Mangano DT, Greenfield LJ, Rankin JS (1994) Relationship of the proinflammatory cytokines to myocardial ischemia and dysfunction after uncomplicated coronary revascularization. J Thorac Cardiovasc Surg 108(4):626–635

    CAS  PubMed  Google Scholar 

  19. Kobzar G, Mardla V, Ratsep I, Samel N (2006) Platelet activity before and after coronary artery bypass grafting. Platelets 17(5):289–291

    Article  CAS  PubMed  Google Scholar 

  20. Leslie JB (1993) Incidence and aetiology of perioperative hypertension. Acta Anaesthesiol Scand Suppl 99:5–9

    Article  CAS  PubMed  Google Scholar 

  21. Hebert PC, Yetisir E, Martin C, Blajchman MA, Wells G, Marshall J, Tweeddale M, Pagliarello G, Schweitzer I (2001) Transfusion requirements in critical care investigators for the canadian critical care trials group is a low transfusion threshold safe in critically ill patients with cardiovascular diseases? Crit Care Med 29(2):227–234

    Article  CAS  PubMed  Google Scholar 

  22. Aessopos A, Deftereos S, Farmakis D, Corovesis C, Tassiopoulos S, Tsironi M, Georgonikou D, Moyssakis J (2004) Cardiovascular adaptation to chronic anemia in the elderly: an echocardiographic study. Clin Invest Med 27(5):265–273

    PubMed  Google Scholar 

  23. Ishii S, Inomata T, Ikeda Y, Nabeta T, Iwamoto M, Watanabe I, Naruke T, Shinagawa H, Koitabashi T, Nishii M, Takeuchi I, Izumi T (2014) Clinical significance of heart rate during acute decompensated heart failure to predict left ventricular reverse remodeling and prognosis in response to therapies in nonischemic dilated cardiomyopathy. Heart Vessels 29(1):88–96

    Article  PubMed  Google Scholar 

  24. Sunbul M, Seckin D, Durmus E, Ozqen Z, Bozbay M, Bozbay A, Kivrak T, Oquz M, Sari I, Erqun T, Aqirbasli M (2014) Assessment of arterial stiffness and cardiovascular hemodynamics by oscillometric method in psoriasis patients with normal cardiac functions. Heart Vessels. doi:10.1007/s00380-014-0490-y

    PubMed  Google Scholar 

  25. Nagai M, Kario K (2013) Visit-to-visit blood pressure variability, silent cerebral injury, and risk of stroke. Am J Hypertens 26:1369–1376

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by 2013 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Seok Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Her, AY., Ann, S.H., Lee, J.H. et al. Differences in ward-to-cath lab systolic blood pressure predicts long-term adverse outcomes after drug-eluting stent implantation. Heart Vessels 30, 740–745 (2015). https://doi.org/10.1007/s00380-014-0550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-014-0550-3

Keywords

Navigation