Skip to main content
Log in

Clinical significance of heart rate during acute decompensated heart failure to predict left ventricular reverse remodeling and prognosis in response to therapies in nonischemic dilated cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Although an increased heart rate (HR) is a strong predictor of poor prognosis in cases of chronic heart failure (HF), the clinical value of HR as a predictor in acute decompensated HF (ADHF) is unclear. Seventy-eight patients with nonischemic dilated cardiomyopathy (NIDCM) with sinus rhythm who were first hospitalized for ADHF from 2002 to 2010 were retrospectively investigated after exclusion of patients with tachycardia-induced cardiomyopathy. The patients were divided into two groups stratified by HR on admission with a median value of 113 beats/min (Group H with HR ≥ 113 beats/min; Group L with HR < 113 beats/min). Despite similar backgrounds, including pharmacotherapy for HF, HR changes responding to titration of β-blocker (BB) therapy and myocardial interstitial fibrosis, left ventricular (LV) ejection fractions improved more significantly 1 year later in Group H than in Group L (57 % ± 11 % vs. 46 % ± 12 %, P < 0.001). Cardiac event-free survival rates were also significantly improved in Group H (P = 0.038). Multiple regression analysis revealed that only the peak HR on admission was an independent predictor of LV reverse remodeling (LVRR) 1 year later (β = 0.396, P = 0.005). High HR on first admission for ADHF is a strong predictor of LVRR, with a better prognosis in the event of NIDCM in response to optimal pharmacotherapy, independent of pre-existing myocardial damage and subsequent HR reduction by BB therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kannel WB, Kannel C, Paffenbarger RS Jr, Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham Study. Am Heart J 113:1489–1494

    Article  CAS  PubMed  Google Scholar 

  2. Mulieri LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR (1992) Altered myocardial force–frequency relation in human heart failure. Circulation 85:1743–1750

    Article  CAS  PubMed  Google Scholar 

  3. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338:973–976

    Article  CAS  PubMed  Google Scholar 

  4. Mulder P, Barbier S, Chagraoui A, Richard V, Henry JP, Lallemand F, Renet S, Lerebours G, Mahlberg-Gaudin F, Thuillez C (2004) Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation 109:1674–1679

    Article  CAS  PubMed  Google Scholar 

  5. Colin P, Ghaleh B, Monnet X, Hittinger L, Berdeaux A (2004) Effect of graded heart rate reduction with ivabradine on myocardial oxygen consumption and diastolic time in exercising dogs. J Pharmacol Exp Ther 308:236–240

    Article  CAS  PubMed  Google Scholar 

  6. Böhm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L (2010) Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 376:886–894

    Article  PubMed  Google Scholar 

  7. Abraham WT, Fonarow GC, Albert NM, Stough WG, Gheorghiade M, Greenberg BH, O’Connor CM, Sun JL, Yancy CW, Young JB (2008) Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the organized program to initiate lifesaving treatment in hospitalized patients with heart failure (OPTIMIZE-HF). J Am Coll Cardiol 52:347–356

    Article  PubMed  Google Scholar 

  8. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1349–1539

    Article  Google Scholar 

  9. Hori M, Sasayama S, Kitabatake A, Toyo-oka T, Handa S, Yokoyama M, Matsuzaki M, Takeshita A, Origasa H, Matsui K, Hosoda S (2004) Low-dose carvedilol improves left ventricular function and reduces cardiovascular hospitalization in Japanese patients with chronic heart failure: the Multicenter Carvedilol Heart Failure Dose Assessment (MUCHA) trial. Am Heart J 147:324–330

    Article  CAS  PubMed  Google Scholar 

  10. McKee PA, Castelli WP, McNamara PM, Kannel WB (1971) The natural history of congestive heart failure: the Framingham study. N Engl J Med 285:1441–1446

    Article  CAS  PubMed  Google Scholar 

  11. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS, Ganiats TG, Goldstein S, Gregoratos G, Jessup ML, Noble RJ, Packer M, Silver MA, Stevenson LW, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Jacobs AK, Hiratzka LF, Russell RO, Smith SC Jr, American College of Cardiology/American Heart Association (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 38:2101–2113

    Google Scholar 

  12. Düngen HD, Apostolović S, Inkrot S, Tahirović E, Krackhardt F, Pavlović M, Putniković B, Lainscak M, Gelbrich G, Edelmann F, Wachter R, Eschenhagen T, Waagstein F, Follath F, Rauchhaus M, Haverkamp W, Osterziel KJ, Dietz R (2008) Bisoprolol vs. carvedilol in elderly patients with heart failure: rationale and design of the CIBIS-ELD trial. Clin Res Cardiol 97:578–586

    Article  PubMed  Google Scholar 

  13. Aoki T, Fukumoto Y, Sugimura K, Oikawa M, Satoh K, Nakano M, Nakayama M, Shimokawa H (2011) Prognostic impact of myocardial interstitial fibrosis in non-ischemic heart failure. Comparison between preserved and reduced ejection fraction heart failure. Circ J 75:2605–2613

    Article  CAS  PubMed  Google Scholar 

  14. Fonarow GC, Adams KF Jr, Abraham WT, Yancy CW, Boscardin WJ (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293:572–580

    Article  CAS  PubMed  Google Scholar 

  15. Aronson D, Mittleman MA, Burger AJ (2004) Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Med 116:466–473

    Article  CAS  PubMed  Google Scholar 

  16. Flannery G, Gehrig-Mills R, Billah B, Krum H (2008) Analysis of randomized controlled trials on the effect of magnitude of heart rate reduction on clinical outcomes in patients with systolic chronic heart failure receiving beta-blockers. Am J Cardiol 101:865–869

    Article  CAS  PubMed  Google Scholar 

  17. Kim BH, Cho KI, Kim SM, Kim N, Han J, Kim JY, Kim IJ (2012) Heart rate reduction with ivabradine prevents thyroid hormone-induced cardiac remodeling in rat. Heart Vessels. doi: 10.1007/s00380-012-0304-z

  18. The SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302

    Article  Google Scholar 

  19. Matsumori A (2003) Efficacy and safety of oral candesartan cilexetil in patients with congestive heart failure. Eur J Heart Fail 5:669–677

    Article  CAS  PubMed  Google Scholar 

  20. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717

    Article  CAS  PubMed  Google Scholar 

  21. Camm AJ, Fei L (1996) Chronotropic incompetence, Part II: clinical implications. Clin Cardiol 19:503–508

    Article  CAS  PubMed  Google Scholar 

  22. Lauer MS, Okin PM, Larson MG, Evans JC, Levy D (1996) Impaired heart rate response to graded exercise: prognostic implications of chronotropic incompetence in the Framingham Heart study. Circulation 93:1520–1526

    Article  CAS  PubMed  Google Scholar 

  23. Ellestad MH (1996) Chronotropic incompetence: the implication of heart rate response to exercise (compensatory parasympathetic hyperactivity?). Circulation 93:1485–1487

    Article  CAS  PubMed  Google Scholar 

  24. Lauer MS, Francis GS, Okin PM, Pashkow FJ, Snader CE, Marwick TH (1999) Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 281:524–529

    Article  CAS  PubMed  Google Scholar 

  25. Chen JY, Lee YL, Tsai WC, Lee CH, Chen PS, Li YH, Tsai LM, Chen JH, Lin LJ (2011) Cardiac autonomic functions derived from short-term heart rate variability recordings associated with heart rate recovery after treadmill exercise test in young individuals. Heart Vessels 26:282–288

    Article  PubMed  Google Scholar 

  26. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302

    Article  CAS  PubMed  Google Scholar 

  27. Spyrou N, Rosen SD, Fath-Ordoubadi F, Jagathesan R, Foale R, Kooner JS, Camici PG (2002) Myocardial beta-adrenoceptor density one month after acute myocardial infarction predicts left ventricular volumes at six months. J Am Coll Cardiol 40:1216–1224

    Article  CAS  PubMed  Google Scholar 

  28. Umana E, Solares CA, Alpert MA (2003) Tachycardia-induced cardiomyopathy. Am J Med 114:51–55

    Article  PubMed  Google Scholar 

  29. Gelb BD, Garson A Jr (1990) Noninvasive discrimination of right atrial ectopic tachycardia from sinus tachycardia in “dilated cardiomyopathy”. Am Heart J 120:886–891

    Article  CAS  PubMed  Google Scholar 

  30. Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, Furuno T, Takata J, Doi YL (2011) Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and β blockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 107:1065–1070

    Article  CAS  PubMed  Google Scholar 

  31. Francis GS, Tang WH (2003) Beta-blockers and reverse remodeling: what are the implications? Am Heart J 145:200–202

    Article  PubMed  Google Scholar 

  32. Yamada T, Fukunami M, Ohmori M, Iwakura K, Kumagai K, Kondoh N, Minamino T, Tsujimura E, Nagareda T, Kotoh K, Hoki N (1993) Which subgroup of patients with dilated cardiomyopathy would benefit from long-term beta-blocker therapy? A histologic viewpoint. J Am Coll Cardiol 21:628–633

    Article  CAS  PubMed  Google Scholar 

  33. Kawai K, Takaoka H, Hata K, Yokoya Y, Yokoyama M (1999) Prevalence, predictors, and prognosis of reversal of maladaptive remodeling with intensive medical therapy in idiopathic dilated cardiomyopathy. Am J Cardiol 84:671–676

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Harukazu Tsuruta, Department of Medical Informatics, Kitasato University School of Allied Health Sciences, and Dr Keika Hoshi, Kitasato Clinical Research Center, for their outstanding assistance with statistical analysis. This study was supported in part by a grant-in-aid for scientific research from The Vehicle Racing Commemorative Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, S., Inomata, T., Ikeda, Y. et al. Clinical significance of heart rate during acute decompensated heart failure to predict left ventricular reverse remodeling and prognosis in response to therapies in nonischemic dilated cardiomyopathy. Heart Vessels 29, 88–96 (2014). https://doi.org/10.1007/s00380-013-0335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-013-0335-0

Keywords

Navigation