Skip to main content
Log in

Effects of the left ventricular assist device on the compliance and distensibility of the carotid artery

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We investigated the impact of continuous-flow left ventricular assist devices (LVAD) on the carotid elastic properties. Carotid artery parameters (diameter distensibility (DD), cross-sectional distensibility (CSD), diameter compliance (DC), cross-sectional compliance (CSC), and incremental elastic modulus (IEM)) were measured in a cross-sectional study using a standard ultrasound with a 10-MHz linear array probe. Measurements (mean ± SEM) were made in separate groups at various clinical time points: prior to LVAD surgery (baseline; 13 male/3 female; age 48 ± 3 years), 1 week following LVAD placement (acute; 12 male/2 female; age 47 ± 3 years), approximately 24 weeks following LVAD surgery (chronic; 13 male/2 female; age 52 ± 3 years), and in a group of healthy subjects (controls; 9 male/1 female; age 51 ± 4 years). Distensibility properties were lower (P < 0.05) in the acute (DD 2.3 % ± 0.4 %; CSD 4.7 % ± 0.8 %) and chronic (DD 2.2 % ± 0.4 %; CSD 4.5 ± 0.9 %) compared with the baseline (DD 5.9 % ± 0.7 %; CSD 12.2 % ± 1.5 %) and control (DD 5.8 % ± 0.6 %; CSD 11.9 % ± 1.3 %) groups. Compliance properties were lower (P < 0.05) in the chronic (DC 4.4 ± 0.7 mm/mmHg × 10−3; CSC 1.2 ± 0.2 mmHg−1 × 10−3) compared with acute (DC 9.0 ± 1.6 mm/mmHg × 10−3; CSC 2.6 ± 0.4 mmHg−1 × 10−3) and baseline (DC 11.1 ± 1.1 mm/mmHg × 10−3; CSC 3.3 ± 0.4 mmHg−1 × 10−3) groups. The compliance properties in the control (DC 8.3 ± 0.8 mm/mmHg × 10−3; CSC 2.4 ± 0.2 mmHg−1 × 10−3) group were not different from any of the patient groups. The IEM was higher (P < 0.05) in the chronic (6908 ± 1269 mmHg) compared with acute (2739 ± 412 mmHg), baseline (1849 ± 177 mmHg), and control (2349 ± 241 mmHg) groups. Chronic continuous-flow LVAD support is associated with lower carotid artery compliance and distensibility, which may place further strain on the left ventricle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu J, Cao TS, Duan YY, Yang YL, Yuan LJ (2011) Effects of cold pressor-induced sympathetic stimulation on the mechanical properties of common carotid and femoral arteries in healthy males. Heart Vessels 26(2):214–221

    Article  PubMed  CAS  Google Scholar 

  2. Reneman R, Meinders J, Hoeks APG (2005) Non-invasive ultrasound in arterial wall dynamics in humans: what have we learned and what remains to be solved. Eur Heart J 26(10):960–966

    Article  PubMed  Google Scholar 

  3. Olinic D, Olinic M, Laza S, Lenta D, Anton F, Albu C, Olinic N (2003) Arterial compliance in hypertension and heart failure. Rom J Intern Med 41(2):113–124

    PubMed  CAS  Google Scholar 

  4. Liao D, Arnett DK, Tyroler HA, Riley WA, Chambless LE, Szklo M, Heiss G (1999) Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34(2):201–206

    Article  PubMed  CAS  Google Scholar 

  5. van Popele NM, Grobbee DE, Bots ML, Asmar R, Topouchian J, Reneman RS, Hoeks AP, van der Kuip DA, Hofman A, Witteman JC (2001) Association between arterial stiffness and atherosclerosis: the Rotterdam study. Stroke 32(2):454–460

    Article  PubMed  Google Scholar 

  6. Triantafyllidi H, Rizos I, Rallidis L, Tsikrikas S, Triantafyllis A, Ikonomidis I, Panou F, Rigopoulos A, Kremastinos DT (2010) Aortic distensibility associates with increased ascending thoracic aorta diameter and left ventricular diastolic dysfunction in patients with coronary artery ectasia. Heart Vessels 25(3):187–194

    Article  PubMed  Google Scholar 

  7. Pierdomenico SD, Mancini M, Cuccurullo C, Guglielmi MD, Pierdomenico AM, Di Nicola M, Di Carlo S, Lapenna D, Cuccurullo F (2012) Prediction of carotid plaques in hypertensive patients by risk factors, left ventricular hypertrophy, and epicardial adipose tissue thickness. Heart Vessels

  8. O’Rourke M (1995) Mechanical principles in arterial disease. Hypertension 26(1):2–9

    Article  PubMed  Google Scholar 

  9. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H (2006) Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 27(21):2588–2605

    Article  PubMed  Google Scholar 

  10. Lage SG, Kopel L, Monachini MC, Medeiros CJ, Pileggi F, Polak JF, Creager MA (1994) Carotid arterial compliance in patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 74(7):691–695

    Article  PubMed  CAS  Google Scholar 

  11. Badran H, Mostafa A, Serage A, Fareed W, Abdelfatah E, Fathe A (2009) Arterial mechanics in ischemic versus nonischemic cardiomyopathy: clinical and diagnostic impact. Echocardiography 26(7):785–800

    Article  PubMed  Google Scholar 

  12. Jarcho J, Fang J (2005) Recent advances in cardiac allotransplantation. In: Fang J, Couper G (eds) Surgical management of congestive heart failure. Humana Press, Totowa, p 1

    Chapter  Google Scholar 

  13. Argenziano M, Michler RE, Rose EA (1997) Cardiac transplantation for endstage heart disease. Heart Vessels Suppl 12:23–27

    Google Scholar 

  14. Hoffman FM (2005) Outcomes and complications after heart transplantation: a review. JCN 20(5 Suppl):S31–S42

    PubMed  Google Scholar 

  15. Patel A, Kuvin J, Pandian N, Smith J, Udelson J, Mendelsohn M, Konstam M, Karas R (2001) Heart failure etiology affects peripheral vascular endothelial function after cardiac transplantation. JACC 37(1):195–200

    Article  PubMed  CAS  Google Scholar 

  16. Zimmer R, Lee M (2010) Transplant coronary artery disease. JACC Cardiovasc Interv 3(4):367–377

    Article  PubMed  Google Scholar 

  17. Schmidt A, Pleiner J, Bayerle-Eder M, Wiesinger G, Rodler S, Quittan M, Mayer G, Wolzt M (2002) Regular physical exercise improves endothelial function in heart transplant recipients. Clin Transplant 16:137 (Journal Article)

    Google Scholar 

  18. Entwistle JC (2004) Short- and long-term mechanical ventricular assistance towards myocardial recovery. Surg Clin North Am 84(1):201–221

    Article  PubMed  Google Scholar 

  19. DiGiorgi P, Naka Y, Oz M (2005) Left ventricular assist devices. In: Fang J, Couper G (eds) Surgical management of congestive heart failure. Humana Press, Totowa, p 155

    Chapter  Google Scholar 

  20. Radovancevic B, Vrtovec B, deKort E, Radovancevic R, Gregoric I, Frazier OH (2007) End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transplant 26(8):815–818

    Article  PubMed  Google Scholar 

  21. Takami Y, Otsuka G, Mueller J, Ohashi Y, Tayama E, Schima H, Schmallegger H, Wolner E, Nose Y (1997) Flow characteristics and required control algorithm of an implantable centrifugal left ventricular assist device. Heart Vessels 12(2):92–97

    Article  PubMed  CAS  Google Scholar 

  22. Taketani S, Sawa Y, Fukushima N, Masai T, Kawaguchi N, Onishi S, Matsuda H (1997) Myocardial histological changes in dilated cardiomyopathy during a long-term left ventricular assist device support. Heart Vessels 12(2):98–100

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen TN, Hu D, Kim M-H, Grines CL (eds) (2007) Management of complex cardiovascular problems: the evidence-based medicine approach, vol. 3. Blackwell Futura, Boston

  24. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE (1992) Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340(8828):1111–1115

    Article  PubMed  CAS  Google Scholar 

  25. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241

    Article  PubMed  CAS  Google Scholar 

  26. Shah A, Gkaliagkousi E, Ritter J, Ferro A (2010) Endothelial function and arterial compliance are not impaired in subjects with heart failure of non-ischemic origin. J Card Fail 16(2):114–120

    Article  PubMed  CAS  Google Scholar 

  27. Loizou CP, Pantziaris M, Pattichis MS, Kyriacou E, Pattichis CS (2009) Ultrasound image texture analysis of the intima and media layers of the common carotid artery and its correlation with age and gender. Comput Med Imaging Graph 33(4):317–324

    Article  PubMed  CAS  Google Scholar 

  28. Aminbakhsh A, Mancini GB (1999) Carotid intima-media thickness measurements: what defines an abnormality? A systematic review. Clin Invest Med 22(4):149–157

    PubMed  CAS  Google Scholar 

  29. Simon A, Gariepy J, Chironi G, Megnien J-L, Levenson J (2002) Intima–media thickness: a new tool for diagnosis and treatment of cardiovascular risk. J Hypertens 20(2):159–169

    Article  PubMed  CAS  Google Scholar 

  30. Cervini P, Park SJ, Shah DK, Penev IE, Lewis BD (2010) Carotid Doppler ultrasound findings in patients with left ventricular assist devices. Ultrasound Q 26(4):255–261

    Article  PubMed  Google Scholar 

  31. Reneman RS, van Merode T, Hick P, Muytjens AM, Hoeks AP (1986) Age-related changes in carotid artery wall properties in men. Ultrasound Med Biol 12(6):465–471

    Article  PubMed  CAS  Google Scholar 

  32. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T (1987) Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res 21(9):678–687

    Article  PubMed  CAS  Google Scholar 

  33. Tomiyama H, Yamashina A (2010) Non-invasive vascular function tests: their pathophysiological background and clinical application. Circ J 74(1):24–33

    Article  PubMed  Google Scholar 

  34. Papaioannou TG, Mathioulakis DS, Tsangaris SG (2003) Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. J Med Eng Technol 27(2):85–89

    Article  PubMed  CAS  Google Scholar 

  35. Stewart AS, Russo MJ, Martens TP, Naseem TM, Deng MC, Wang R, Argenziano M, Oz M, Naka Y (2008) Longer duration of continuous-flow ventricular assist device support predicts greater hemodynamic compromise after return of pulsatility. J Thorac Cardiovasc Surg 136(2):524–525

    Article  PubMed  Google Scholar 

  36. Amir O, Radovancevic B, DelgadoIii R, Kar B, Radovancevic R, Henderson M, Cohn W, Smart F (2006) Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. J Heart Lung Transplant 25(4):391–394

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle L. Templeton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Templeton, D.L., John, R., Painter, P. et al. Effects of the left ventricular assist device on the compliance and distensibility of the carotid artery. Heart Vessels 28, 377–384 (2013). https://doi.org/10.1007/s00380-012-0271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-012-0271-4

Keywords

Navigation