Skip to main content

Advertisement

Log in

Neovascularization in a mouse model via stem cells derived from human fetal amniotic membranes

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

In this study, we evaluated the effect of culture-expanded mesenchymal stem cells (MSCs), derived from amniotic membranes, on neovascularization and blood flow, in an animal model of limb ischemia in immune-deficient mice. MSCs were cultured from human amniotic membranes by collagenase digestion. Human amniotic mesenchymal stem cells (hAMSCs) were administered intramuscularly at three different sites of the ischemic leg whose femoral vessels were ligated. After 4 weeks of culture, a population of homogeneous mesenchymal cells was isolated from the human amniotic membranes after confluence was reached. We performed three different groups of mice model [controls, hAMSCs, conditioned media from the hAMSCs (hAMSCs-CM)]. The blood flow recovery in the hindlimb ischemia model was significantly higher in the hAMSC-transplanted group than in the control group. Moreover, hAMSCs-CM significantly improved the cutaneous blood flow. The histological examination showed that red fluorescence (CM-DiI)-labeled hAMSCs was detected in the interstitial tissues between the muscle fibers 2 weeks after transplantation. The results of this study showed that hAMSCs may be an attractive, alternative source of progenitor or stem cells for basic research as well as clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prockop DJ (1997) Marrow stromal cells as stem cells for non hematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  3. Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8(3):301–316

    Article  PubMed  CAS  Google Scholar 

  4. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    Article  PubMed  CAS  Google Scholar 

  5. Tatsumi K, Otani H, Sato D, Enoki C, Iwasaka T, Imamura H, Taniuchi S, Kaneko K, Adachi Y, Ikehara S (2008) Granulocyte-colony stimulating factor increases donor mesenchymal stem cells in bone marrow and their mobilization into peripheral circulation but does not repair dystrophic heart after bone marrow transplantation. Circ J 72(8):1351–1358

    Article  PubMed  Google Scholar 

  6. Choi JH, Choi J, Lee WS, Rhee I, Lee SC, Gwon HC, Lee SH, Choe YH, Kim DW, Suh W, Kim DK, Jeon ES (2007) Lack of additional benefit of intracoronary transplantation of autologous peripheral blood stem cell in patients with acute myocardial infarction. Circ J 71(4):486–494

    Article  PubMed  Google Scholar 

  7. De Haro J, Acin F, Lopez-Quintana A, Florez A, Martinez-Aguilar E, Varela C (2009) Meta-analysis of randomized, controlled clinical trials in angiogenesis: gene and cell therapy in peripheral arterial disease. Heart Vessels 24(5):321–328

    Article  PubMed  Google Scholar 

  8. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110

    Article  PubMed  Google Scholar 

  9. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22(4):625–634

    Article  PubMed  Google Scholar 

  10. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21(1):50–60

    Article  PubMed  CAS  Google Scholar 

  11. Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22(5):649–658

    Article  PubMed  CAS  Google Scholar 

  12. Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 8(3):215–227

    Article  PubMed  CAS  Google Scholar 

  13. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113:5–10

    PubMed  CAS  Google Scholar 

  14. Fauza D (2004) Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol 18:877–891

    Article  PubMed  Google Scholar 

  15. Yen BL, Huang HI, Chien CC, Jui HY, Ko BS, Yao M (2005) Isolation of multipotent cells from human term placenta. Stem Cells 23:3–9

    Article  PubMed  CAS  Google Scholar 

  16. Lefebvre S, Adrian F, Moreau P, Gourand L, Dausset J, Berrih-Aknin S (2000) Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum Immunol 61:1095–1101

    Article  PubMed  CAS  Google Scholar 

  17. Terada S, Matsuura K, Enosawa S, Miki M, Hoshika A, Suzuki S (2000) Inducing proliferation of human amniotic epithelial (HAE) cells for cell therapy. Cell Transpl 9:701–704

    CAS  Google Scholar 

  18. Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba B, Jung JS (2006) Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12:111–121

    Article  PubMed  CAS  Google Scholar 

  19. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    PubMed  CAS  Google Scholar 

  20. Chen MC, Chen CJ, Yang CH, Liu WH, Fang CY, Hsieh YK, Chang HW (2008) Relationship of the percentage of circulating endothelial progenitor cell to the severity of coronary artery disease. Heart Vessels 23(1):47–52

    Article  PubMed  Google Scholar 

  21. Planar-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeuticperspectives. Circulation 109:656–663

    Article  Google Scholar 

  22. Scheubel RJ, Zorn H, Silber RE, Kuss O, Morawietz H, Holtz J (2003) Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 42(12):2073–2080

    Article  PubMed  Google Scholar 

  23. Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109(13):1615–1622

    Article  PubMed  Google Scholar 

  24. Trelford JD, Trelford-Sauder M (1979) The amnion in surgery, past and present. Am J Obstet Gynecol 134(7):833

    PubMed  CAS  Google Scholar 

  25. Solomon A, Espana EM, Tseng SC (2003) Amniotic membrane transplantation for reconstruction of the conjunctival fornices. Ophthalmology 110(1):93

    Article  PubMed  Google Scholar 

  26. Tseng SC, Prabhasawat P, Lee SH (1997) Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol 124(6):765

    PubMed  CAS  Google Scholar 

  27. Sakuragawa N, Thangavel R, Mizuguchi M (1996) Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 209(1):9

    Article  PubMed  CAS  Google Scholar 

  28. Bankiewicz KS, Palmatier M, Plunkett RJ (1994) Reversal of hemiparkinsonian syndrome in nonhuman primates by amnion implantation into caudate nucleus. J Neurosurg 81(6):869

    Article  PubMed  CAS  Google Scholar 

  29. Sankar V, Muthusamy R (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118(1):11

    Article  PubMed  CAS  Google Scholar 

  30. Sakuragawa N, Enosawa S, Ishii T (2000) Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 45(3):171

    Article  PubMed  CAS  Google Scholar 

  31. Wei JP, Zhang TS, Kawa S (2003) Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transpl 12(5):545

    Google Scholar 

  32. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM (2006) Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem 17:279–290

    Article  PubMed  CAS  Google Scholar 

  33. Zongning M, Jun J, Lei C, Jianzhong Z, Wei H, Jidong Z, Hanguang Q (2006) Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 30(9):681–687

    Article  Google Scholar 

  34. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  PubMed  CAS  Google Scholar 

  35. Tetsuya N, Eishi A, Kento T, Satoshi A, Tomomi U, Tomosaburo T, Hiroaki M (2007) Skeletal myosphere-derived progenitor cell transplantation promotes neovascularization in δ-sarcoglycan knockdown cardiomyopathy. Biochem Biophys Res Commun 352(3):668–674

    Article  Google Scholar 

  36. Maa N, Ladilova Y, Kaminskia A, Piechaczekb C, Choia Y-H, Lia W, Steinhoffa G (2006) Umbilical cord blood cell transplantation for myocardial regeneration. Transpl Proc 38(3):771–773

    Article  Google Scholar 

  37. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–1052

    Article  PubMed  CAS  Google Scholar 

  38. April EN, Richard JB, Katherine G, Haiying C, Zhao-Jun L, Omaida CV (2008) A CXCL5- and bFGF-dependent effect of PDGF-B-activated fibroblasts in promoting trafficking and differentiation of bone marrow-derived mesenchymal stem cells. Exp Cell Res 314(11–12):2176–2186

    Google Scholar 

  39. Kofler S, Nickel T, Weis M (2005) Role of cytokines in cardiovascular diseases: a focus on endothelial responses to inflammation. Clin Sci (Lond) 108(3):205–213

    Article  CAS  Google Scholar 

  40. Keane MP, Belperio JA, Burdick MD, Lynch JP, Fishbein MC, Strieter RM (2001) ENA-78 is an important angiogenic factor in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 164(12):2239–2242

    PubMed  CAS  Google Scholar 

  41. Ieda Y, Fujita J, Ieda M, Yagi T, Kawada H, Ando K, Fukuda K (2007) G-CSF and HGF: combination of vasculogenesis and angiogenesis synergistically improves recovery in murine hind limb ischemia. J Mol Cell Cardiol 42(3):540–548

    Article  PubMed  CAS  Google Scholar 

  42. Powell RJ, Dormandy J, Simons M, Morishita R, Annex BH (2004) Therapeutic angiogenesis for critical limb ischemia: design of the hepatocyte growth factor therapeutic angiogenesis clinical trial. Vasc Med 9(3):193–198

    Article  PubMed  Google Scholar 

  43. Rubio D, Garcia-Castro J, Martín MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039

    PubMed  CAS  Google Scholar 

  44. Prather WR, Toren A, Meiron M (2008) Placental-derived and expanded mesenchymal stromal cells (PLX-I) to enhance the engraftment of hematopoietic stem cells derived from umbilical cord blood. Expert Opin Biol Ther 8(8):1241–1250

    Article  PubMed  CAS  Google Scholar 

  45. Aschan J (2006) Allogeneic haematopoietic stem cell transplantation: current status and future outlook. Br Med Bull 77–78:23–36

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ook Hwan Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.G., Choi, O.H. Neovascularization in a mouse model via stem cells derived from human fetal amniotic membranes. Heart Vessels 26, 196–205 (2011). https://doi.org/10.1007/s00380-010-0064-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0064-6

Keywords

Navigation