Abstract
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities. In 2023, the sea surface temperature (SST) and upper 2000 m ocean heat content (OHC) reached record highs. The 0–2000 m OHC in 2023 exceeded that of 2022 by 15 ± 10 ZJ (1 Zetta Joules = 1021 Joules) (updated IAP/CAS data); 9 ± 5 ZJ (NCEI/NOAA data). The Tropical Atlantic Ocean, the Mediterranean Sea, and southern oceans recorded their highest OHC observed since the 1950s. Associated with the onset of a strong El Niño, the global SST reached its record high in 2023 with an annual mean of ∼0.23°C higher than 2022 and an astounding > 0.3°C above 2022 values for the second half of 2023. The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.
摘要
人类活动驱动全球物理和生物地球化学环境发生了显著的变化. 2023年, 全球海表平均温度和上层2000米海洋热含量均达到有器测记录以来的最高值. 2023年上层2000米热量比2022年高15 ± 10泽塔焦耳(1泽塔焦耳=1021焦耳)(中国科学院大气物理研究所发布的IAP/CAS数据)、 9 ± 5泽塔焦耳(美国国家海洋和大气管理局国家环境信息中心的NCEI/NOAA数据). 热带大西洋、 地中海、 南大洋上层2000米热含量均达到上世纪50年代以来的最高值. 随着一个较强的厄尔尼诺事件的发展, 2023年全球海表平均温度比2022年高约0.23°C, 其在2023年下半年比2022年同期高超过 0.3°C. 此外, 海洋密度层结、温度空间不均一性指数在2023年均达到1960年以来的最高值.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Abraham, J., and Coauthors, 2013: A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys., 51, 450–483, https://doi.org/10.1002/rog.20022.
Abraham, J., L. J. Cheng, M. E. Mann, K. Trenberth, and K. Von Schuckmann, 2022: The ocean response to climate change guides both adaptation and mitigation efforts. Atmos. Ocean. Sci. Lett., 15, 100221, https://doi.org/10.1016/j.aosl.2022.100221.
Abraham, J. P., and L. J. Cheng, 2022: Intersection of climate change, energy, and adaptation. Energies, 15, 5886, https://doi.org/10.3390/en15165886.
Argo, 2023: Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC). SEANOE. Available from https://doi.org/10.17882/42182.
Ben Ismail S., K. Schroeder, J. Chiggiato, S. Sparnocchia, and M. Borghini, 2021: Long term changes monitored in two Mediterranean Channels. Copernicus Marine Service Ocean State Report, Issue 5, K. Von Schuckmann et al., Eds., 48–52, https://doi.org/10.1080/1755876X.2021.1946240.
Boyer, T., and Coauthors, 2016: Sensitivity of global upper-ocean heat content estimates to mapping methods, XBT bias corrections, and baseline climatologies. J. Climate, 29, 4817–4842, https://doi.org/10.1175/JCLI-D-15-0801.1.
Boyer, T. P., and Coauthors, 2018: World ocean database 2018. NOAA Atlas NESDIS 87.
Cheng, L. J., J. Zhu, R. Cowley, T. Boyer, and S. Wijffels, 2014: Time, probe type, and temperature variable bias corrections to historical expendable bathythermograph observations. J. Atmos. Oceanic Technol., 31(8), 1793–1825, https://doi.org/10.1175/JTECH-D-13-00197.1.
Cheng, L. J., K. E. Trenberth, J. Fasullo, T. Boyer, J. Abraham, and J. Zhu, 2017: Improved estimates of ocean heat content from 1960 to 2015. Science Advances, 3, e1601545, https://doi.org/10.1126/sciadv.1601545.
Cheng, L. J., K. Trenberth, J. Fasullo, J. Abraham, T. Boyer, K. Von Schuckmann, and J. Zhu, 2018: Taking the pulse of the planet. Eos, 99, 14–16, https://doi.org/10.1029/2017EO081839.
Cheng, L. J., K. E. Trenberth, J. T. Fasullo, M. Mayer, M. Balmaseda, and J. Zhu, 2019: Evolution of ocean heat content related to ENSO. J. Climate, 32, 3529–3556, https://doi.org/10.1175/JCLI-D-18-0607.1.
Cheng, L. J., and Coauthors, 2020: Improved estimates of changes in upper ocean salinity and the hydrological cycle. J. Climate, 33, 10 357–10 381, https://doi.org/10.1175/JCLI-D-20-0366.1.
Cheng, L. J., and Coauthors, 2022a: Past and future ocean warming. Nature Reviews Earth & Environment, 3, 776–794, https://doi.org/10.1038/s43017-022-00345-1.
Cheng, L. J., G. Foster, Z. Hausfather, K. E. Trenberth, and J. Abraham, 2022b: Improved quantification of the rate of ocean warming. J. Climate, 35, 4827–4840, https://doi.org/10.1175/JCLI-D-21-0895.1.
Cheng, L. J, and Coauthors, 2022c: Another record: Ocean warming continues through 2021 despite La Niña conditions. Adv. Atmos. Sci., 39(3), 373–385, https://doi.org/10.1007/s00376-022-1461-3.
Cheng, L. J., and Coauthors, 2023: Another year of record heat for the oceans. Adv. Atmos. Sci, 40, 963–974, https://doi.org/10.1007/s00376-023-2385-2.
Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 4342–4362, https://doi.org/10.1175/2010JCLI3377.1.
Escudier, R., and Coauthors, 2021: A high resolution reanalysis for the mediterranean sea. Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285.
Fischer, E. M., S. Sippel, and R. Knutti, 2021: Increasing probability of record-shattering climate extremes. Nature Climate Change, 11, 689–695, https://doi.org/10.1038/s41558-021-01092-9.
Fasullo, J. T., Gent, P. R., and Nerem, R. S. 2020: Forced patterns of sea level rise in the community earth system model large ensemble from 1920 to 2100. Journal of Geophysical Research: Oceans, 125, e2019JC016030. https://doi.org/10.1029/2019JC016030
Gouretski, V., and L. J. Cheng, 2020: Correction for systematic errors in the global dataset of temperature profiles from mechanical bathythermographs. J. Atmos. Oceanic Technol., 37(5), 841–855, https://doi.org/10.1175/JTECH-D-19-0205.1.
Gouretski, V., L. J. Cheng, and T. Boyer, 2022: On the consistency of the bottle and CTD profile data. J. Atmos. Oceanic Technol., 39(12), 1869–1887, https://doi.org/10.1175/JTECH-D-22-0004.1.
Gouretski, V., F. Roquet, and L. J. Cheng, 2023: Measurement biases in ocean temperature profiles from marine mammal data loggers. J. Atmos. Oceanic Technol., submitted.
Gulev, S., and Coauthors, 2021: Changing state of the climate system. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte et al., Eds., Cambridge University Press.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Johnson, G., and Coauthors, 2018: Ocean heat content [in State of the Climate in 2017]. Bull. Amer. Meteor. Soc., 99, S72–S77.
Levitus, S., J. I. Antonov, T. P. Boyer, R. A. Locarnini, H. E. Garcia, and A. V. Mishonov, 2009: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophys. Res. Lett., 36, L07608, https://doi.org/10.1029/2008GL037155.
Levitus, S., and Coauthors, 2012: World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106.
Li, G. C., L. J. Cheng, J. Zhu, K. E. Trenberth, M. E. Mann, and J. P. Abraham, 2020a: Increasing ocean stratification over the past half-century. Nature Climate Change, 10, 1116–1123, https://doi.org/10.1038/s41558-020-00918-2.
Li, K. X., F. Zheng, L. J. Cheng, T. Y. Zhang, and J. Zhu, 2023: Record-breaking global temperature and crises with strong El Niño in 2023–2024. The Innovation Geoscience, 1(2), 100030. https://doi.org/10.59717/j.xinn-geo.2023.100030.
Li, K. X., F. Zheng, J. Zhu, and Q.-C. Zeng, 2024: El Niño and the AMO sparked the astonishingly large margin of warming in the global mean surface temperature in 2023. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-023-3371-4.
Li, Y. L., W. Q. Han, F. Wang, L. Zhang, and J. Duan, 2020b: Vertical structure of the upper-Indian Ocean thermal variability. J. Climate, 33, 7233–7253, https://doi.org/10.1175/JCLI-D-19-0851.1.
Loeb, N. G., G. C. Johnson, T. J. Thorsen, J. M. Lyman, F. G. Rose, and S. Kato, 2021: Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett., 48, e2021GL093047, https://doi.org/10.1029/2021GL093047.
Loeb, N. G., and Coauthors, 2022: Evaluating twenty-year trends in Earth’s energy flows from observations and reanalyses. J. Geophys. Res. Atmos., 127, e2022JD036686, https://doi.org/10.1029/2022JD036686.
Nigam, T., and Coauthors, 2021: Mediterranean Sea Physical Reanalysis INTERIM (CMEMS MED-Currents, E3R1i system) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1I.
Pinardi, N., and Coauthors, 2015: Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Progress in Oceanography, 132, 318–332, https://doi.org/10.1016/j.pocean.2013.11.003.
Purkey, S., and G. C. Johnson, 2010: Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Climate, 23, 6336–6351, https://doi.org/10.1175/2010JCLI3682.1.
Ren, Q. P., Y.-O. Kwon, J. Y. Yang, R.-X. Huang, Y. L. Li, and F. Wang, 2022: Increasing inhomogeneity of the global oceans. Geophys. Res. Lett., 49, e2021GL097598, https://doi.org/10.1029/2021GL097598.
Reseghetti, F., C. Fratianni, and S. Simoncelli, 2023: Reprocessed of XBT dataset in the Ligurian and Tyrrhenian seas (1999–2019). Istituto Nazionale di Geofisica e Vulcanologia (INGV). [Available online from https://doi.org/10.13127/rep_xbt_1999_2019].
Rhein, M., and Coauthors, 2013: Observations: Ocean pages. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press.
Scannell, H. A., G. C. Johnson, L. Thompson, J. M. Lyman, and S. C. Riser, 2020: Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett., 47, e2020GL090548, https://doi.org/10.1029/2020GL090548.
Schroeder, K., J. Chiggiato, S. A. Josey, M. Borghini, S. Aracri, and S. Sparnocchia, 2017: Rapid response to climate change in a marginal sea. Scientific Reports, 7, 4065, https://doi.org/10.1038/s41598-017-04455-5.
Seidov, D., A. Mishonov, and R. Parsons, 2021: Recent warming and decadal variability of Gulf of Maine and Slope Water. Limnology and Oceanography, 66, 3472–3488, https://doi.org/10.1002/lno.11892.
Simoncelli, S., N. Pinardi, C. Fratianni, C. Dubois, and G. Notarstefano, 2018: Water mass formation processes in the Mediterranean Sea over the past 30 years. In: Copernicus Marine Service Ocean State Report, Issue 2, Journal of Operational Oceanography, 11:sup1, s13–s16, https://doi.org/10.1080/1755876X.2018.1489208.
Simoncelli, S., Reseghetti, F., Fratianni, C., Cheng, L., and Raiteri, G., 2023: Reprocessing of XBT profiles from the Ligurian and Tyrrhenian seas over the time period 1999–2019 with full metadata upgrade, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2023-525, in review.
Tan, Z. T., L. J. Cheng, V. Gouretski, B. Zhang, Y. J. Wang, F. C. Li, Z. H. Liu, and J. Zhu, 2023: A new automatic quality control system for ocean profile observations and impact on ocean warming estimate. Deep-Sea Res. Part I Oceanogr. Res. Pap., 194, 103961, https://doi.org/10.1016/j.dsr.2022.103961.
Trenberth, K. E., J. T. Fasullo, and M. A. Balmaseda, 2014: Earth’s energy imbalance. J. Climate, 27, 3129–3144, https://doi.org/10.1175/JCLI-D-13-00294.1.
Trenberth, K. E., J. M. Caron, D. P. Stepaniak, and S. Worley, 2002: Evolution of El Niño–Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 107, AAC 5-1–AAC 5–17, doi: https://doi.org/10.1029/2000JD000298.
Trenberth, K. E., L. J. Cheng, P. Jacobs, Y. X. Zhang, and J. Fasullo, 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744, https://doi.org/10.1029/2018EF000825.
Trenberth, K. E., and Y. X. Zhang, 2019: Observed interhemispheric meridional heat transports and the role of the Indonesian Throughflow in the Pacific Ocean. J. Climate, 32, 8523–8536, https://doi.org/10.1175/JCLI-D-19-0465.1.
Volkov, D. L., S.-K. Lee, A. L. Gordon, and M. Rudko, 2020: Unprecedented reduction and quick recovery of the South Indian Ocean heat content and sea level in 2014–2018. Science Advances, 6, eabc1151, https://doi.org/10.1126/sciadv.abc1151.
Von Schuckmann, K., and Coauthors, 2016: The Copernicus marine environment monitoring service ocean state report. Journal of Operational Oceanography, 2, s235–s320, https://doi.org/10.1080/1755876X.2016.1273446.
Von Schuckmann, K., and Coauthors, 2020: Heat stored in the Earth system: Where does the energy go? Earth System Science Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020.
Zheng, F., and J. Zhu, 2016: Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47, 3901–3915, https://doi.org/10.1007/s00382-016-3048-0.
Acknowledgements
The IAP/CAS analysis is supported by the National Natural Science Foundation of China (Grant Nos. 42076202, 42122046 and 42261134536), the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of Sciences; National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab). The calculations in this study were carried out on the ORISE Supercomputer. NCAR is sponsored by the US National Science Foundation. We used some data collected onboard R/V Shiyan 6 implementing the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC ship-time Sharing Projects 42149910. The efforts of Dr. Fasullo in this work were supported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046 and by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282. The efforts of Dr. MISHONOV were supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland). The IAP/CAS data are available at http://www.ocean.iap.ac.cn/ and https://msdc.qdio.ac.cn/. The NCEI/NOAA data are available at https://www.ncei.noaa.gov/products/climate-data-records/global-ocean-heat-content. This study has been conducted using also E.U. Copernicus Marine Service Information (https://marine.copernicus.eu/) for the Mediterranean OHC estimates. G. LI is supported by the Young Talent Support Project of Guangzhou Association for Science and Technology. The CO2 data are from https://gml.noaa.gov/ccgg/trends/. The historical XBT data along the MX04 line (Genova-Palermo) are from Reseghetti et al. (2023). Since 2021, XBT data have been collected under the framework of the MACMAP project funded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on its commercial vessels. The Mediterranean Sea analysis has also been conducted using E.U. Copernicus Marine Service Information.
Author information
Authors and Affiliations
Corresponding author
Additional information
Article Highlights
• In 2023, the global annual mean SST and upper 2000 m ocean heat content were the highest ever recorded by modern instruments.
• Other oceanic indices, including density stratification and spatial temperature inhomogeneity, attained record highs.
• A strong El Niño developed during 2023 and influenced warming and salinity anomaly patterns.
Rights and permissions
Open Access . This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and the source, plus a link to the Creative Commons license, and indications of any changes made. The images or other third-party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and intended use is not permitted by statutory regulation or exceeds the permitted use, the user will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Cheng, L., Abraham, J., Trenberth, K.E. et al. New Record Ocean Temperatures and Related Climate Indicators in 2023. Adv. Atmos. Sci. 41, 1068–1082 (2024). https://doi.org/10.1007/s00376-024-3378-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00376-024-3378-5