Skip to main content

Advertisement

Log in

Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

How to design a reliable ensemble prediction strategy with considering the major uncertainties of a forecasting system is a crucial issue for performing an ensemble forecast. In this study, a new stochastic perturbation technique is developed to improve the prediction skills of El Niño–Southern Oscillation (ENSO) through using an intermediate coupled model. We first estimate and analyze the model uncertainties from the ensemble Kalman filter analysis results through assimilating the observed sea surface temperatures. Then, based on the pre-analyzed properties of model errors, we develop a zero-mean stochastic model-error model to characterize the model uncertainties mainly induced by the missed physical processes of the original model (e.g., stochastic atmospheric forcing, extra-tropical effects, Indian Ocean Dipole). Finally, we perturb each member of an ensemble forecast at each step by the developed stochastic model-error model during the 12-month forecasting process, and add the zero-mean perturbations into the physical fields to mimic the presence of missing processes and high-frequency stochastic noises. The impacts of stochastic model-error perturbations on ENSO deterministic predictions are examined by performing two sets of 21-year hindcast experiments, which are initialized from the same initial conditions and differentiated by whether they consider the stochastic perturbations. The comparison results show that the stochastic perturbations have a significant effect on improving the ensemble-mean prediction skills during the entire 12-month forecasting process. This improvement occurs mainly because the nonlinear terms in the model can form a positive ensemble-mean from a series of zero-mean perturbations, which reduces the forecasting biases and then corrects the forecast through this nonlinear heating mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alves O, Balmaseda M, Anderson D, Stockdale T (2004) Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Q J R Meteorol Soc 130:647–668

    Article  Google Scholar 

  • An SI, Jin FF (2004) Nonlinearity and asymmetry of ENSO. J Clim 17(12):2399–2412

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) Climate change: the El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–2011: is our capability increasing? Bull Am Meteorol Soc 93:63–651

    Article  Google Scholar 

  • Batstone C, Hendon HH (2005) Characteristics of stochastic variability associated with ENSO and the role of the MJO. J Clim 18:1773–1789

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere/ocean system: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486

    Article  Google Scholar 

  • Buizza R, Palmer TN (1998) Impact of ensemble size on ensemble prediction. Mon Weather Rev 126(9):2503–2518

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938

    Article  Google Scholar 

  • Chang CC, Yang SC, Keppenne C (2014) Applications of the mean recentering scheme to improve typhoon track prediction: a case study of typhoon Nanmadol (2011). J Meteor Soc Jpn 92:559–584

    Article  Google Scholar 

  • Ding H, Keenlyside N, Latif M (2012) Impact of the equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn 38(9):1965–1972

    Article  Google Scholar 

  • Duan WS, Zhang R (2010) Is model parameter error related to a significant spring predictability barrier for El Niño events? Results from a theoretical model. Adv Atmos Sci 27(5):1003–1013

    Article  Google Scholar 

  • Duan WS, Zhao P (2015) Revealing the most disturbing tendency error of Zebiak–Cane model associated with El Niño predictions by nonlinear forcing singular vector approach. Clim Dyn 44:2351–2367

    Article  Google Scholar 

  • Feng LS, Zheng F, Zhu J, Liu HW (2015) The role of stochastic model error perturbations in predicting the 2011/12 double-dip La Niña. SOLA 11:65–69

    Article  Google Scholar 

  • Gebbie G, Eisenman I, Wittenberg A, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semi-stochastic feedback for ENSO. J Atmos Sci 64:3281–3295

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340

    Article  Google Scholar 

  • Hendon HH, Wheeler MC, Zhang C (2007) Seasonal dependence of the MJO–ENSO relationship. J Clim 20:531–543

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, de Boyer Montégut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the Indian Ocean Dipole on following year’s El Niño. Nat Geosci 3:168–172

    Article  Google Scholar 

  • Ji M, Leetmaa A (1997) Impact of data assimilation on ocean initialization and El Niño prediction. Mon Weather Rev 125:742–753

    Article  Google Scholar 

  • Ji M, Reynolds RW, Behringer DW (2000) Use of TOPEX/Poseidon sea level data for ocean analyses and ENSO prediction: some early results. J Clim 13:216–231

    Article  Google Scholar 

  • Jin FF, An S, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120. doi:10.1029/2002GL016356

    Article  Google Scholar 

  • Jin FF, Lin L, Timmermann A, Zhao J (2007) Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys Res Lett 34:L03807. doi:10.1029/2006GL027372

    Google Scholar 

  • Jin EK, James L, Kinter III, Wang B, Park C-K, Kang I-S, Kirtman BP, Kug J-S, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31(6):647–664

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modeling, data assimilation, and predictability. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Karspeck AR, Kaplan A, Cane MA (2006) Predictability loss in an intermediate ENSO model due to initial error and atmospheric noise. J Clim 19(15):3572–3588. doi:10.1175/JCLI3818.1

    Article  Google Scholar 

  • Keenlyside N, Kleeman R (2002) Annual cycle of equatorial zonal currents in the Pacific. J Geophys Res 107:3093. doi:10.1029/2000JC000711

    Article  Google Scholar 

  • Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initialising ENSO forecasts using SST. Tellus A 57:340–356

    Article  Google Scholar 

  • Keenlyside N, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40:2278–2283. doi:10.1002/grl.50362

    Article  Google Scholar 

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 131:2324–2341

    Article  Google Scholar 

  • Kirtman BP, Shukla J, Balmaseda M, Graham N, Penland C, Xue Y, Zebiak SE (2002) Current status of ENSO forecast skill: a report to the climate variability and predictability (CLIVAR) working group on seasonal to interannual prediction. WCRP Informal Report No. 23/01, 31 pp

  • Kleeman R (2008) Limits, variability, and general behavior of statistical predictability of the midlatitude atmosphere. J Atmos Sci 65:263–275

    Article  Google Scholar 

  • Kleeman R, Moore AM (1997) A theory for the limitations of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767

    Article  Google Scholar 

  • Kleeman R, Moore AM (1999) New method for determining the reliability of dynamical ENSO predictions. Mon Weather Rev 127:694–705

    Article  Google Scholar 

  • Klein SA, Hartmann DL (1993) The seasonal cycle of low stratiform clouds. J Clim 6:1587–1606

    Article  Google Scholar 

  • Kug JS, Li T, An SI et al (2006) Role of the ENSO–Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys Res Lett 33:L09710. doi:10.1029/2005GL024916

    Article  Google Scholar 

  • Latif M, Anderson D, Barnett T et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res Oceans 103(C7):14375–14393

    Article  Google Scholar 

  • Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Paper 13, 173 pp and 17 microfiche

  • Lin JL (2007) The double-ITCZ Problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera SK, Shingu S, Yamagata T (2005) Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J Clim 18:4474–4497

    Article  Google Scholar 

  • Luo JJ, Masson S, Behera SK, Yamagata T (2008) Extended ENSO predictions using a fully coupled ocean–atmosphere model. J Clim 21:84–93

    Article  Google Scholar 

  • Luo JJ, Zhang RC, Behera SK et al (2010) Interaction between El Niño and extreme Indian Ocean dipole. J Clim 23:726–742

    Article  Google Scholar 

  • Luo JJ, Yuan CX, Sasaki W et al (2015) Current status of intraseasonal–seasonal-to-interannual prediction of the Indo-Pacific climate. In: Yamagata T, Behera S (eds) Chapter 3 in The Indo-Pacific climate variability and predictability, Asia-Pacific weather and climate book series, vol 7. The World Scientific Publisher, Singapore

  • Madden R, Julian P (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41:2393–2409

    Article  Google Scholar 

  • Mantua NJ, Battisti DS (1995) Aperiodic variability in the Zebiak-Cane coupled ocean-atmosphere model: air-sea interactions in the western equatorial Pacific. J Clim 8:2897–2927

    Article  Google Scholar 

  • Mason SJ, Mimmack GM (2002) Comparison of some statistical methods of probabilistic forecasting of ENSO. J Clim 15:8–29

    Article  Google Scholar 

  • McCreary JP (1981) A linear stratified ocean model of the equatorial undercurrent. Philos Trans R Soc London 298:603–635

    Article  Google Scholar 

  • McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Nino. Geophys Res Lett 26:2961–2964

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1739–1745

    Article  Google Scholar 

  • Monterey G, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. Technical report NOAA, Silver Spring, MD

  • Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Q J R Meteorol Soc 122:1405–1446

    Article  Google Scholar 

  • Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220

    Article  Google Scholar 

  • Mueller JA, Veron F (2010) Bulk formulation of the heat and water vapor fluxes at the air–sea interface, including nonmolecular contributions. J Atmos Sci 67:234–247

    Article  Google Scholar 

  • Palmer TN, Andersen U, Cantelaube P et al (2004) Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull Am Meteorol Soc 85(6):853–872

    Article  Google Scholar 

  • Penland C (2003) A stochastic approach to nonlinear dynamics: a review (Electronic supplement to ‘Noise out of chaos and why it won’t go away’). Bull Am Meteorol Soc 84:925. doi:10.1175/BAMS-84-7-Penland

    Article  Google Scholar 

  • Peters ME, Bretherton CS (2005) A simplified model of the Walker circulation with an interactive ocean mixed layer and cloud-radiative feedbacks. J Clim 18:4216–4234

    Article  Google Scholar 

  • Picaut J, Hackert E, Busalacchi AJ, Murtugudde R, Lagerloef GSE (2002) Mechanisms of the 1997–1998 El Niño-La Niña, as inferred from space-based observations. J Geophys Res. doi:10.1029/2001JC000850

    Google Scholar 

  • Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Roads JO (1987) Predictability in the extended range. J Atmos Sci 44:1228–1251

    Article  Google Scholar 

  • Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20705

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Hamburg, p 90, Report No. 218

  • Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Weather Rev 125:754–772

    Article  Google Scholar 

  • Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19(15):3483–3517

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Shutts G (2004) A stochastic kinetic-energy backscatter algorithm for use in ensemble prediction systems. Tech Memo 449, ECMW, Reading

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45(21):3283–3287

    Article  Google Scholar 

  • Tang Y, Yu B (2008) MJO and its relationship to ENSO. J Geophys Res 113:D14106. doi:10.1029/2007JD009230

    Article  Google Scholar 

  • Tippett MK, Barnston AG (2008) Skill of multimodel ENSO probability forecasts. Mon Weather Rev 136:3933–3946

    Article  Google Scholar 

  • Tsyrulnikov MD (2005) Stochastic modelling of model errors: a simulation study. Q J R Meteorol Soc 131:3345–3371. doi:10.1256/qj.05.19

    Article  Google Scholar 

  • Tziperman E, Stone L, Cane M, Jarosh H (1994) El Nino chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science 264:72–74

    Article  Google Scholar 

  • Tziperman E, Zebiak S, Cane MA (1997) Mechanisms of seasonal–ENSO interaction. J Atmos Sci 54:61–71

    Article  Google Scholar 

  • Vimont D, Wallace JM, Battisti DS (2001) Footprinting: a seasonal connection between the mid-latitudes and tropics. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Wang L, Yang HJ (2014) The role of atmospheric teleconnection in the subtropical thermal forcing on the equatorial Pacific. Adv Atmos Sci 31(4):985–994

    Article  Google Scholar 

  • Wilks Daniel (2014) Probabilistic canonical correlation analysis forecasts, with application to tropical Pacific sea-surface temperatures. Int J Climatol 34(5):1405–1413

    Article  Google Scholar 

  • Williams PD (2005) Modelling climate change: the role of unresolved processes. Philos Trans R Soc Math Phys Eng Sci 363(1837):2931–2946

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Yang SC, Rienecker M, Keppenne C (2010) The impact of ocean data assimilation on seasonal-to-interannual forecasts: a case study of the 2006 El Niño event. J Clim 23:4080–4095

    Article  Google Scholar 

  • Yu Y, Mu M, Duan WS (2012) Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak–Cane model? J Clim 25(4):1263–1277

    Article  Google Scholar 

  • Zavala-Garay J, Moore AM, Kleeman R (2004) Influence of stochastic forcing on ENSO prediction. J Geophys Res Oceans (1978–2012) 109:C11007. doi:10.1029/2004JC002406

  • Zavala-Garay J, Zhang C, Moore AM, Kleeman R (2005) The linear response of ENSO to the Madden–Julian oscillation. J Clim 18:2441–2459

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  • Zhang C, Gottschalck J (2002) SST anomalies of ENSO and the Madden–Julian oscillation in the equatorial Pacific. J Clim 15:2429–2445

    Article  Google Scholar 

  • Zhang RH, Zebiak SE, Kleeman R, Keenlyside N (2003) A new intermediate coupled model for El Niño simulation and prediction. Geophys Res Lett. doi:10.1029/2003GL018010

    Google Scholar 

  • Zhang RH, Zebiak SE, Kleeman R, Keenlyside N (2005) Retrospective El Niño forecast using an improved intermediate coupled model. Mon Weather Rev 133:2777–2802

    Article  Google Scholar 

  • Zhang W, Chen QL, Zheng F (2015) Bias corrections of the heat flux damping process to improve the simulation of ENSO post-2000. SOLA 11:181–185

    Article  Google Scholar 

  • Zheng F, Zhang RH (2012) Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dyn Atmos Oceans 57:45–57

    Article  Google Scholar 

  • Zheng F, Zhang RH (2015) Interannually varying salinity effects on ENSO in the tropical Pacific: a diagnostic analysis from Argo. Ocean Dyn 65(5):691–705

    Article  Google Scholar 

  • Zheng F, Zhu J (2008) Balanced multivariate model errors of an intermediate coupled model for ensemble Kalman filter data assimilation. J Geophys Res 113:C07002. doi:10.1029/2007JC004621

    Google Scholar 

  • Zheng F, Zhu J (2010a) Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system. Glob Planet Change 72:108–117

    Article  Google Scholar 

  • Zheng F, Zhu J (2010b) Coupled assimilation for an intermediated coupled ENSO prediction model. Ocean Dyn 60:1061–1073

    Article  Google Scholar 

  • Zheng F, Zhu J (2015) Roles of initial ocean surface and subsurface states on successfully predicting 2006–2007 El Niño with an intermediate coupled model. Ocean Sci 11:187–194

    Article  Google Scholar 

  • Zheng F, Zhu J, Zhang RH, Zhou GQ (2006) Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys Res Lett 33:L19604. doi:10.1029/2006GL026994

    Article  Google Scholar 

  • Zheng F, Zhu J, Zhang RH (2007) The impact of altimetry data on ENSO ensemble initializations and predictions. Geophys Res Lett 34:L13611. doi:10.1029/2007GL030451

    Google Scholar 

  • Zheng F, Wang H, Zhu J (2009a) ENSO ensemble prediction: initial condition perturbations vs. model perturbations. Chin Sci Bull 54(14):2516–2523

    Article  Google Scholar 

  • Zheng F, Zhu J, Wang H, Zhang RH (2009b) Ensemble hindcasts of ENSO events over the past 120 years using a large number of ensembles. Adv Atmos Sci 26(2):359–372

    Article  Google Scholar 

  • Zheng F, Zhang RH, Zhu J (2014) Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: a diagnostic analysis from Argo. Adv Atmos Sci 31(3):532–542

    Article  Google Scholar 

  • Zhu J, Huang B, Marx L, Kinter JL III, Balmaseda MA, Zhang RH, Hu ZZ (2012) Ensemble ENSO hindcasts initialized from multiple ocean analyses. Geophys Res Lett 39:L09602. doi:10.1029/2012GL051503

    Article  Google Scholar 

  • Zhu J, Huang B, Balmaseda MA, Kinter JL III, Peng P, Hu ZZ, Marx L (2013) Improved reliability of ENSO hindcasts with multi-ocean analyses ensemble initialization. Clim Dyn 41(7–8):1941–1954

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank two anonymous reviewers for their very helpful comments and suggestions. This work was supported by the National Program for Support of Top-notch Young Professionals, the National Basic Research Program of China (Grant No. 2012CB955202), the Chinese Academy Sciences’ Project “Western Pacific Ocean System: Structure, Dynamics and Consequences” (WPOS; Grant No. XDA10010405), and the National Natural Science Foundation of China (Grant No. 41576019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Zhu, J. Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Clim Dyn 47, 3901–3915 (2016). https://doi.org/10.1007/s00382-016-3048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3048-0

Keywords

Navigation