Three-Year Observations of Ozone Columns over Polar Vortex Edge Area above West Antarctica

Abstract

Ozone vertical column densities (VCDs) were retrieved by Zenith Scattered Light-Differential Optical Absorption Spectroscopy (ZSL-DOAS) from January 2017 to February 2020 over Fildes Peninsula, West Antarctica (62.22°S, 58.96°W). Each year, ozone VCDs started to decline around July with a comparable gradient around 1.4 Dobson Units (DU) per day, then dropped to their lowest levels in September and October, when ozone holes appeared (less than 220 DU). Daily mean values of retrieved ozone VCDs were compared with Ozone Monitoring Instrument (OMI) and Global Ozone Monitoring Experiment 2 (GOME-2) satellite observations and the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) reanalysis dataset, with correlation coefficients (R2) of 0.86, 0.94, and 0.90, respectively. To better understand the causes of ozone depletion, the retrieved ozone VCDs, temperature, and potential vorticity (PV) at certain altitudes were analyzed. The profiles of ozone and PV were positively correlated during their fluctuations, which indicates that the polar vortex has a strong influence on stratospheric ozone depletion during Antarctic spring. Located at the edge of polar vortex, the observed data will provide a basis for further analysis and prediction of the inter-annual variations of stratospheric ozone in the future.

摘 要

利用天顶散射光差分吸收光谱技术(ZSL-DOAS),观测了2017年1月至2020年2月西南极菲尔德斯半岛(62.22°S, 58.96°W)上空的臭氧垂直柱浓度(VCD)。结果显示,臭氧VCD在每年的7月以每天1.4 DU的梯度下降,在9-10月下降至最低水平,并出现臭氧空洞(臭氧VCD小于220 DU)。将地基反演的臭氧VCD每日均值与OMI、GOME-2卫星观测结果和MERRA-2再分析数据进行对比,相关性(R2)分别为0.86、0.94与0.90。为了进一步探究臭氧损耗成因,对臭氧VCD、温度与位涡(PV)进行了分析。结果显示,在臭氧波动期间,臭氧与PV的垂直廓线呈现正相关趋势,这表明在南极春季极涡对平流层臭氧的损耗有关键的影响。由于观测站点位于极涡边界区域,该站点的持续观测数据将为臭氧损耗的进一步分析和平流层臭氧的年际变化预测提供依据。

This is a preview of subscription content, access via your institution.

References

  1. Bhartia, P. K., 2002: “OMI Algorithm Theoretical Basis Document: Volume II, OMI Ozone Products”, ATBD-OMI-02, August. [Available online from https://doi.org/https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/OMI/3.3_ScienceData-ProductDocumentation/3.3.4_ProductGenerationAlgorithm/ATBD-OMI-02.pdf]

  2. Bodeker, G. E., H. Struthers, and B. J. Connor, 2002: Dynamical containment of Antarctic ozone depletion. Geophys. Res. Lett., 29(7), 1098, https://doi.org/10.1029/2001GL014206.

    Article  Google Scholar 

  3. Bogumil, K., and Coauthors, 2003: Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. Journal of Photochemistry and Photobiology A: Chemistry, 157(2–3), 167–184, https://doi.org/10.1016/S1010-6030(03)00062-5.

    Article  Google Scholar 

  4. Čízková, K., K. Láska, L. Metelka, and M. Staněk, 2019: Intercomparison of ground- and satellite-based total ozone data products at Marambio base, Antarctic Peninsula region. Atmosphere, 10(11), 721, https://doi.org/10.3390/atmos10110721.

    Article  Google Scholar 

  5. Drdla, K., and R. Müller, 2012: Temperature thresholds for chlorine activation and ozone loss in the polar stratosphere. Annales Geophysicae, 30(7), 1055–1073, https://doi.org/10.5194/angeo-30-1055-2012.

    Article  Google Scholar 

  6. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210, https://doi.org/10.1038/315207a0.

    Article  Google Scholar 

  7. Frieβ, U., K. Kreher, P. V. Johnston, and U. Platt, 2005: Ground-based DOAS measurements of stratospheric trace gases at two Antarctic stations during the 2002 ozone hole period. J. Atmos. Sci., 62(3), 765–777, https://doi.org/10.1175/JAS-3319.1.

    Article  Google Scholar 

  8. Ganeshan, M., and Y. K. Yang, 2019: Evaluation of the Antarctic boundary layer thermodynamic structure in MERRA2 using dropsonde observations from the concordiasi campaign. Earth and Space Science, 6, 2397–2409, https://doi.org/10.1029/2019EA000890.

    Article  Google Scholar 

  9. Hegglin, M. I., and T. G. Shepherd, 2009: Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nature Geoscience, 2, 687–691, https://doi.org/10.1038/ngeo604.

    Article  Google Scholar 

  10. Hermans, C., A. C. Vandaele, S. Fally, M. Carleer, R. Colin, B. Coquart, A. Jenouvrier, and M. F. Merienne, 2003: Absorption cross-section of the collision-induced bands of oxygen from the UV to the NIR. Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, C. Camy-Peyret and A. A. Vigasin, Eds., Springer, 193–202, https://doi.org/10.1007/978-94-010-0025-3_16.

  11. Kokhanovsky, A. A., M. Lamare, and V. Rozanov, 2020: Retrieval of the total ozone over Antarctica using Sentinel-3 ocean and land colour instrument. Journal of Quantitative Spectroscopy and Radiative Transfer, 251, 107045, https://doi.org/10.1016/j.jqsrt.2020.107045.

    Article  Google Scholar 

  12. Koukouli, M. E., and Coauthors, 2014: Intercomparison of Metop-A SO2 measure- ments during the 2010–2011 Icelandic eruptions. Annals of Geophysics, 57, 2110, https://doi.org/10.4401/ag-6613.

    Google Scholar 

  13. Kuttippurath, J., and P. J. Nair, 2017: The signs of Antarctic ozone hole recovery. Scientific Reports, 7, 585, https://doi.org/10.1038/s41598-017-00722-7.

    Article  Google Scholar 

  14. Li, G., Y. K. Tan, C. Y. Li, S. C. Chen, T. Bai, D. Y. Yang, and Y. Zhang, 2015: Characteristics of boreal winter total ozone distribution in the northern hemisphere and their relationship with stratospheric temperature during recent 30 years. Chinese Journal of Geophysics, 58(5), 213–228, https://doi.org/10.1002/cjg2.220168.

    Google Scholar 

  15. Lu, X., and Coauthors, 2019: Surface and tropospheric ozone trends in the Southern Hemisphere since 1990: Possible linkages to poleward expansion of the Hadley circulation. Science Bulletin, 64, 400–409, https://doi.org/10.1016/j.scib.2018.12.021.

    Article  Google Scholar 

  16. Marsing, A., and Coauthors, 2019: Chlorine partitioning in the lowermost Arctic vortex during the cold winter 2015/2016. Atmospheric Chemistry and Physics, 19(16), 10 757–10 772, https://doi.org/10.5194/acp-19-10757-2019.

    Article  Google Scholar 

  17. Meller, R., and G. K. Moortgat, 2000: Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res., 105(D6), 7089–7101, https://doi.org/10.1029/1999JD901074.

    Article  Google Scholar 

  18. Nakajima, H., and Coauthors, 2020: Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011. Atmospheric Chemistry and Physics, 20(2), 1043–1074, https://doi.org/10.5194/acp-20-1043-2020.

    Article  Google Scholar 

  19. Nash, E. R., P. A. Newman, J. E. Rosenfield, and M. R. Schoeberl, 1996: An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res., 101(D5), 9471–9478, https://doi.org/10.1029/96JD00066.

    Article  Google Scholar 

  20. Paschou, P., M. E. Koukouli, D. Balis, C. Lerot, and M. van Roozendael, 2020: The effect of considering polar vortex dynamics in the validation of satellite total ozone observations. Atmospheric Research, 238, 104870, https://doi.org/10.1016/j.atmosres.2020.104870.

    Article  Google Scholar 

  21. Perner, D., A. Roth, and T. Klüpfel, 1994: Groundbased measurements of stratospheric oclo, NO2, and O3 at søndre strømfjord in winter 1991/92. Geophys. Res. Lett., 21(13), 1367–1370, https://doi.org/10.1029/93GL01871.

    Article  Google Scholar 

  22. Platt, U., and J. Stutz, 2008: Differential Optical Absorption Spectroscopy: Principles and Applications. Springer, 568 pp, https://doi.org/10.1007/978-3-540-75776-4.

  23. Pommereau, J. P., 1982: Observation of NO2 diurnal variation in the stratosphere. Geophys. Res. Lett., 9(8), 850–853, https://doi.org/10.1029/gl009i008p00850.

    Article  Google Scholar 

  24. Solomon, S., D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely III, and A. Schmidt, 2016: Emergence of healing in the Antarctic ozone layer. Science, 353(6296), 269–274, https://doi.org/10.1126/science.aae0061.

    Article  Google Scholar 

  25. Sonkaew, T., S. von Savigny, K. U. Eichmann, M. Weber, A. Rozanov, H. Bovensmann, and J. P. Burrows, 2013: Chemical ozone losses in Arctic and Antarctic polar winter/spring season derived from SCIAMACHY limb measurements 2002–2009. Atmospheric Chemistry and Physics, 13(4), 1809–1835, https://doi.org/10.5194/acp-13-1809-2013.

    Article  Google Scholar 

  26. Stutz, J., and U. Platt, 1997: Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer. Appl. Opt., 36(6), 1105–1115, https://doi.org/10.1364/AO.36.001105.

    Article  Google Scholar 

  27. Thomas, H. E., I. M. Watson, S. A. Carn, A. J. Prata, and V. J. Realmuto, 2011: A comparison of AIRS, MODIS and OMI Sulphur dioxide retrievals in volcanic clouds. Geomatics, Natural Hazards and Risk, 2, 217–232, https://doi.org/10.1080/19475705.2011.564212.

    Article  Google Scholar 

  28. Vandaele, A. C., C. Hermans, P. C. Simon, M. van Roozendael, J. M. Guilmot, M. Carleer, and R. Colin, 1996: Fourier transform measurement of NO2 absorption cross-section in the visible range at room temperature. Journal of Atmospheric Chemistry, 25(3), 289–305, https://doi.org/10.1007/BF00053797.

    Article  Google Scholar 

  29. Xie, B., H. Zhang, Z. L. Wang, S. Y. Zhao, and Q. Fu, 2016: A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci., 33, 819–828, https://doi.org/10.1007/s00376-016-5193-0.

    Article  Google Scholar 

  30. Zhang, Y. L., Y. Liu, C. X. Liu, and V. F. Sofieva, 2015: Satellite measurements of the Madden-Julian oscillation in wintertime stratospheric ozone over the Tibetan plateau and East Asia. Adv. Atmos. Sci., 32(11), 1481–1492, https://doi.org/10.1007/s00376-015-5005-y.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 41676184 and 41941011). The authors gratefully acknowledge ECMWF (https://doi.org/https://www.ecmwf.int/) for providing ERA-Interim reanalysis data and GES-DISC (https://doi.org/https://disc.gsfc.nasa.gov/) for providing MERRA-2 data. The authors thank the staff of Great Wall Station for their kind help. The authors acknowledge three anonymous referees for their help on the improvement of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuhan Luo.

Additional information

Article Highlights

• The ozone VCDs retrieved by ground-based ZSL-DOAS indicated that ozone holes appeared over the Fildes Peninsula, West Antarctica, with sharp fluctuations during the spring.

• The polar vortex has a strong influence on stratospheric ozone depletion during Antarctic spring.

• The ozone VCDs from ground-based observations validate satellite observations over the Fildes Peninsula.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Luo, Y., Si, F. et al. Three-Year Observations of Ozone Columns over Polar Vortex Edge Area above West Antarctica. Adv. Atmos. Sci. 38, 1197–1208 (2021). https://doi.org/10.1007/s00376-021-0243-7

Download citation

Key words

  • ozone VCDs
  • ZSL-DOAS
  • Antarctic ozone depletion
  • polar vortex

关键词

  • 臭氧垂直柱浓度
  • 天顶散射光差分吸收光谱技术
  • 南极臭氧损耗
  • 极涡