Skip to main content
Log in

A modeling study of effective radiative forcing and climate response due to tropospheric ozone

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study simulates the effective radiative forcing (ERF) of tropospheric ozone from 1850 to 2013 and its effects on global climate using an aerosol–climate coupled model, BCC AGCM2.0.1 CUACE/Aero, in combination with OMI (Ozone Monitoring Instrument) satellite ozone data. According to the OMI observations, the global annual mean tropospheric column ozone (TCO) was 33.9 DU in 2013, and the largest TCO was distributed in the belts between 30°N and 45°N and at approximately 30°S; the annual mean TCO was higher in the Northern Hemisphere than that in the Southern Hemisphere; and in boreal summer and autumn, the global mean TCO was higher than in winter and spring. The simulated ERF due to the change in tropospheric ozone concentration from 1850 to 2013 was 0.46 W m−2, thereby causing an increase in the global annual mean surface temperature by 0.36°C, and precipitation by 0.02 mm d−1 (the increase of surface temperature had a significance level above 95%). The surface temperature was increased more obviously over the high latitudes in both hemispheres, with the maximum exceeding 1.4°C in Siberia. There were opposite changes in precipitation near the equator, with an increase of 0.5 mm d−1 near the Hawaiian Islands and a decrease of about −0.6 mm d−1 near the middle of the Indian Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antón, M., M. López, J. M. Vilaplana, M. Kroon, R. McPeters, M. Bañón, and A. Serrano, 2009: Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian Peninsula. J. Geophys. Res.: Atmos., 114, D14307.

    Article  Google Scholar 

  • Buchard, V., C. Brogniez, F. Auriol, B. Bonnel, J. Lenoble, A. Tanskanen, B. Bojkov, and P. Veefkind, 2008: Comparison of OMI ozone and UV irradiance data with ground-based measurements at two French sites. Atmos. Chem. Phys., 8, 4517–4528.

    Article  Google Scholar 

  • Chang, W.-Y., H. Liao, and H.-J. Wang, 2009: Climate responses to direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and long-lived greenhouse gases in eastern China over 1951–2000. Adv. Atmos. Sci., 26, 748–762, doi: 10.1007/s00376-009-9032-4.

    Article  Google Scholar 

  • Conley, A. J., J. F. Lamarque, F. Vitt, W. D. Collins, and J. Kiehl, 2013: PORT, a CESM tool for the diagnosis of radiative forcing. Geoscientific Model Development, 6, 469–476.

    Article  Google Scholar 

  • Crutzen, P. J., 1974: Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air. Tellus, 26, 47–57.

    Article  Google Scholar 

  • Derwent, R. G., M. E. Jenkin, and S. M. Saunders, 1996: Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions. Atmos. Environ., 30, 181–199.

    Article  Google Scholar 

  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Chapter 2. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Ed., Cambridge University Press.

    Google Scholar 

  • Fowler, D., and Coauthors, 2009: Atmospheric composition change: Ecosystems-Atmosphere interactions. Atmos. Environ., 43, 5193–5267.

    Article  Google Scholar 

  • Gao, L. J., M. G. Zhang, and Z. W. Han, 2009: Model analysis of seasonal variations in tropospheric ozone and carbon monoxide over East Asia. Adv. Atmos. Sci., 26, 312–318, doi: 10.1007/s00376-009-0312-9.

    Article  Google Scholar 

  • Heath, D. F., A. J. Krueger, H. A. Roeder, and B. D. Henderson, 1975: The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for NIMBUS G. Optical Engineering, 14, 323–331.

    Article  Google Scholar 

  • Hsu, J., and M. J. Prather, 2009: Stratospheric variability and tropospheric ozone. J. Geophys. Res.: Atmos., 114(D6), doi: 10.1029/2008JD010942.

    Google Scholar 

  • Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski, 2008: A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J. Climate, 21, 5145–5153.

    Article  Google Scholar 

  • Isaksen, I. S. A., and Coauthors, 2009: Atmospheric composition change: Climate–Chemistry interactions. Atmos. Environ., 43, 5138–5192.

    Article  Google Scholar 

  • Johnson, C. E., D. S. Stevenson, W. J. Collins, and R. G. Derwent, 2001: Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model. Geophys. Res. Lett., 28, 1723–1726.

    Article  Google Scholar 

  • Kim, J. H., and H. Lee, 2010: What causes the springtime tropospheric ozone maximum over Northeast Asia? Adv. Atmos. Sci., 27, 543–551, doi: 10.1007/s00376-009-9098-z.

    Article  Google Scholar 

  • Kristjánsson, J. E., T. Iversen, A. Kirkevåg, Ø. Seland, and J. Debernard, 2005: Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks. J. Geophys. Res.: Atmos., 110(D24), doi: 10.1029/ 2005JD006299.

    Google Scholar 

  • Lacis, A. A., D. J. Wuebbles, and J. A. Logan, 1990: Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res.: Atmos., 95, 9971–9981.

    Article  Google Scholar 

  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10, 7017–7039.

    Article  Google Scholar 

  • Lamarque, J. F., and Coauthors, 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 6, 179–206.

    Article  Google Scholar 

  • Lin, L., Q. Fu, H. Zhang, J. Su, Q. Yang, and Z. Sun, 2013: Upward mass fluxes in tropical upper troposphere and lower stratosphere derived from radiative transfer calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 117, 114–122.

    Article  Google Scholar 

  • Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, J. C. Bian, X. Liu, and K. Chance, 2010: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001. J. Geophys. Res.: Atmos., 115(D18), doi: 10.1029/2009JD013130.

    Google Scholar 

  • Liu, Y., W.-L. Li, X.-J. Zhou, I.-S.-A. Isaksen, J.-K. Sundet, and J.-H. He, 2003: The possible influences of the increasing anthropogenic emissions in India on tropospheric ozone and OH. Adv. Atmos. Sci., 20, 968–977, doi: 10.1007/BF02915520.

    Article  Google Scholar 

  • Miyazaki, K., H. J. Eskes, K. Sudo, M. Takigawa, M. van Weele and K. F. Boersma, 2012: Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions. Atmos. Chem. Phys., 12, 9545–9579.

    Article  Google Scholar 

  • Myhre, G., and Coauthors, 2013a: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 13, 1853–1877.

    Article  Google Scholar 

  • Myhre G., and Coauthors, 2013b: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Ed., Cambridge University Press.

    Google Scholar 

  • Nakajima, T., A. Higurashi, K. Kawamoto, and J. Penner, 2000: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys. Res. Lett., 28: 1171–1174.

    Article  Google Scholar 

  • Pincus, R., H. W. Barker, and J. J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res.: Atmos., 108(D13), doi: 10.1029/2002JD003322.

    Google Scholar 

  • Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, 2006: Role of tropospheric ozone increases in 20thcentury climate change. J. Geophys. Res., 111, D08302.

    Google Scholar 

  • Shindell, D., and Coauthors, 2013: Attribution of historical ozone forcing to anthropogenic emissions. Nature Climate Change, 3, 567–570.

    Google Scholar 

  • Skeie, R. B., T. K. Berntsen, G. Myhre, K. Tanaka, M. M. Kvalevåg, and C. R. Hoyle, 2011: Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmospheric Chemistry and Physics, 11, 11827–11857.

    Article  Google Scholar 

  • Søvde, O. A., C. R. Hoyle, G. Myhre, and I. S. A. Isaksen, 2011: The HNO3 forming branch of the HO2 + NO reaction: Preindustrial-to-present trends in atmospheric species and radiative forcings. Atmospheric Chemistry and Physics, 11, 8929–8943.

    Article  Google Scholar 

  • Stevenson, D. S., and Coauthors, 2006: Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res.: Atmos. (1984–2012), 111(D8), D08301.

    Article  Google Scholar 

  • Stevenson, D. S., and Coauthors, 2013: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 3063–3085.

    Article  Google Scholar 

  • Stohl, A., and Coauthors, 2003: Stratosphere-troposphere exchange: A review, and what we have learned from staccato. J. Geophys. Res.: Atmos. (1984–2012), 108(D12), doi: 10.1029/2002JD002490.

    Google Scholar 

  • Stordal, F., and Coauthors, 2003: Climate impact of tropospheric ozone changes. Ozone-Climate Interactions, I. S. A. Isaksen, Ed., European Commission Air Pollution research report No. 81.

    Google Scholar 

  • Veefkind, J. P., J. F. de Haan, E. J. Brinksma, M. Kroon, and P. F. Levelt, 2006: Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique. IEEE Trans. Geosci. Remote Sens., 44(5), 1239–1244.

    Article  Google Scholar 

  • Wang, Z.-L., H. Zhang, X.-W. Jing, and X.-D. Wei, 2013a: Effect of non-spherical dust aerosol on its direct radiative forcing. Atmos. Res., 120–121, 112–126.

    Article  Google Scholar 

  • Wang, Z.-L., H. Zhang, J.-N. Li, X.-W. Jing, and P. Lu, 2013b: Radiative forcing and climate response due to the presence of black carbon in cloud droplets. J. Geophys. Res.: Atmos., 118, 3662–3675.

    Google Scholar 

  • Wang, Z. L., H. Zhang, and X. Y. Zhang, 2014: Black carbon reduction will weaken the aerosol net cooling effect. Atmos. Chem. Phys. Discuss, 14, 33117–33141, doi: 10.5194/acpd-14-33117-2014.

    Article  Google Scholar 

  • Wang, Z. L., H. Zhang, and X. Y. Zhang, 2015: Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect, Atmos. Chem. Phys., 15(7), 3671–3685.

    Google Scholar 

  • Wu, T. W., and Coauthors, 2010: The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • Xin, X. G., T. W. Wu, J. L. Li, Z. Z. Wang, W. P. Li, and F. H. Wu, 2013: How well does BCC CSM1.1 reproduce the 20th century climate change over China? Atmospheric and Oceanic Science Letters, 6(1), 21–26.

    Google Scholar 

  • Young, P. J., and Coauthors, 2012: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics Discussions, 12, 21615–21677.

    Article  Google Scholar 

  • Zhang, H., T. Nakajima, G. Y. Shi, T. Suzuki, and R. Imasu, 2003: An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res.: Atmos. (1984–2012), 108(D20), doi: 10.1029/2002JD003358.

    Google Scholar 

  • Zhang, M. G., Y. F. Xu, I. Uno, and H. Akimoto, 2004: A numerical study of tropospheric ozone in the springtime in East Asia. Adv. Atmos. Sci., 21, 163–170, doi: 10.1007/BF02915702.

    Article  Google Scholar 

  • Zhang, H., G. Y. Shi, T. Nakajima, and T. Suzuki, 2006a: The effects of the choice of the k-interval number on radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 98, 31–43.

    Article  Google Scholar 

  • Zhang, H., T. Suzuki, T. Nakajima, G. Y. Shi, X. Y. Zhang, and Y. Liu, 2006b: Effects of band division on radiative calculations. Optical Engineering, 45, 016002.

    Article  Google Scholar 

  • Zhang, H., Z. Shen, X.-D. Wei, M. Zhang, and Z. Li, 2012a: Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in china. Atmos. Res., 113, 113–125.

    Article  Google Scholar 

  • Zhang, H., and Coauthors, 2012b: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38, 1675–1693.

    Article  Google Scholar 

  • Zhang, H., Q. Chen, B. Xie, and S. Y. Zhao, 2014a: PM2.5 and tropospheric ozone in china and pollutant emission controlling integrated analyses. Progressus Inquisitiones de Mutatione Climatis, 10, 289–296. (in Chinese)

    Google Scholar 

  • Zhang, H., X.-W. Jing, and J. Li, 2014b: Application and evaluation of a new radiation code under McICA scheme in BCC AGCM2.0.1. Geoscientific Model Development, 7, 737–754.

    Article  Google Scholar 

  • Zhao, S.Y., H. Zhang, S. Feng, and Q. Fu, 2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol climate model system. Int. J. Climatol., 35, doi: 10.1002/joc.4093.

  • Zhou, X. J., C. Luo, W. L. Li, and J. E. Shi, 1995: Total ozone changes in China and low center over the Tibetan plateau. Chinese Science Bulletin, 40, 1396–1398. (in Chinese)

    Google Scholar 

  • Zhou, T. J., L. W. Zou, B. Wu, C. X. Jin, F. F. Song, X. L. Chen, and L. X. Zhang, 2014a: Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. Journal of Meteorological Research, 28(5), 762–779.

    Article  Google Scholar 

  • Zhou, T. J., and Coauthors, 2014b: Chinese contribution to CMIP5: An overview of five Chinese models’ performances. Journal of Meteorological Research, 28(4), 481–509.

    Article  Google Scholar 

  • Ziemke, J. R., S. Chandra, G. J. Labow, P. K. Bhartia, L. Froidevaux, and J. C. Witte, 2011: A global climatology of tropospheric and stratospheric ozone derived from aura OMI and MLS measurements. Atmos. Chem. Phys., 11, 9237–9251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Zhang, H., Wang, Z. et al. A modeling study of effective radiative forcing and climate response due to tropospheric ozone. Adv. Atmos. Sci. 33, 819–828 (2016). https://doi.org/10.1007/s00376-016-5193-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-5193-0

Key words

Navigation