Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 8, pp 1049–1062 | Cite as

Different Asian Monsoon Rainfall Responses to Idealized Orography Sensitivity Experiments in the HadGEM3-GA6 and FGOALS-FAMIL Global Climate Models

  • Kai Chi Wong
  • Senfeng Liu
  • Andrew G. Turner
  • Reinhard K. Schiemann
Open Access
Original Paper

Abstract

Recent work has shown the dominance of the Himalaya in supporting the Indian summer monsoon (ISM), perhaps by surface sensible heating along its southern slope and by mechanical blocking acting to separate moist tropical flow from drier midlatitude air. Previous studies have also shown that Indian summer rainfall is largely unaffected in sensitivity experiments that remove only the Tibetan Plateau. However, given the large biases in simulating the monsoon in CMIP5 models, such results may be model dependent. This study investigates the impact of orographic forcing from the Tibetan Plateau, Himalaya and Iranian Plateau on the ISM and East Asian summer monsoon (EASM) in the UK Met Office’s HadGEM3-GA6 and China’s Institute of Atmospheric Physics FGOALS-FAMIL global climate models. The models chosen feature oppositesigned biases in their simulation of the ISM rainfall and circulation climatology.

The changes to ISM and EASM circulation across the sensitivity experiments are similar in both models and consistent with previous studies. However, considerable differences exist in the rainfall responses over India and China, and in the detailed aspects such as onset and retreat dates. In particular, the models show opposing changes in Indian monsoon rainfall when the Himalaya and Tibetan Plateau orography are removed. Our results show that a multi-model approach, as suggested in the forthcoming Global Monsoon Model Intercomparison Project (GMMIP) associated with CMIP6, is needed to clarify the impact of orographic forcing on the Asian monsoon and to fully understand the implications of model systematic error.

Key words

Tibetan Plateau East Asian summer monsoon Indian summer monsoon model bias Global Monsoon Model Intercomparison Project (GMMIP) 

摘要

最近的研究工作已经表明喜马拉雅山在印度夏季风的主导作用, 也许是靠其南侧斜坡地表感热或者是靠其机械阻挡作用使来自中纬度的干空气和热带湿气流隔离开. 以往的研究也已经表明如果在敏感性实验中仅仅去除青藏高原, 印度夏季降水并不会受到太大影响. 然而, 考虑到CMIP5模式在季风的模拟存在较大的偏差, 这样的结果可能具有模式依赖性. 本文使用来自UK Met Office HadGEM3-GA6和中国大气物理研究所FGOALS-FAMIL两个大气环流模式研究了青藏高原、喜马拉雅山和伊朗高原的地形强迫对印度夏季风和东亚夏季风的影响. 选择的两个模式在印度夏季风降水和环流的气候平均态上存在相反符号的偏差. 印度夏季风和东亚夏季风环流的变化在两个模式中都比较相似, 与以往研究结果一致. 然而, 印度和中国的降水响应存在相当大的差异, 在细节方面比如爆发和回撤的日期. 特别的, 两个模式在剔除喜马拉雅山和青藏高原的地形实验中在印度季风降水方面表现出相反的变化. 我们的研究表明, 正如即将到来的CMIP6中全球季风模式比较计划(GMMIP)所建议的, 需要使用多模式方法来阐明地形强迫对亚洲季风的影响并充分理解模式系统性偏差的意义.

关键词

青藏高原 东亚夏季风 印度夏季风 模式偏差 GMMIP 

Notes

Acknowledgements

This study was supported jointly by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China and the Major Research Plan of the National Natural Science Foundation of China (Grant Nos. 91637312 and 91437219).

References

  1. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  2. Boos, W. R., and Z. M. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463(7278), 218–222, https://doi.org/10.1038/nature08707. CrossRefGoogle Scholar
  3. Boos, W. R., and Z. M. Kuang, 2013: Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 3, 1192, https://doi.org/10.1038/srep01192. CrossRefGoogle Scholar
  4. Bollasina, M. A., and Y. Ming, 2013: The general circulation model precipitation bias over the southwestern equatorial Indian Ocean and its implications for simulating the South Asian monsoon. Climate Dyn., 40(3–4), 823–838, https://doi.org/10.1007/s00382-012-1347-7. CrossRefGoogle Scholar
  5. Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058. CrossRefGoogle Scholar
  6. Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597, https://doi.org/10.1002/qj.828. CrossRefGoogle Scholar
  7. Dong, G. T., H. Zhang, A. Moise, L. Hanson, P. Liang, and H. Ye, 2016: CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate. Climate Dyn., 46, 355–385, https://doi.org/10.1007/s00382-015-2588-z. CrossRefGoogle Scholar
  8. Edwards, J. M. and A. Slingo, 1996: Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteor. Soc., 122, 689–719, https://doi.org/10.1002/qj.49712253107. Google Scholar
  9. Feng, J. M., T. Wei, W. J. Dong, Q. Z. Wu, and Y. L. Wang, 2014: CMIP5/AMIP GCM Simulations of East Asian Summer Monsoon. Adv. Atmos. Sci., 31, 836–850, https://doi.org/10.1007/s00376-013-3131-y. CrossRefGoogle Scholar
  10. Flohn, H., 1957: Large-scale aspects of the “summer monsoon” in South and East Asia. J. Meteor. Soc. Japan, 35A, 180–186, https://doi.org/10.2151/jmsj1923.35A.0180. CrossRefGoogle Scholar
  11. Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci., 37, 1722–1733, https://doi.org/10.1175/1520-0469(1980)037<1722:NPOCDM>2.0.CO;2.Google Scholar
  12. Gates, W. L., and Coauthors, 1998: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Amer. Meteor. Soc., 80, 29–56, https://doi.org/10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.CrossRefGoogle Scholar
  13. Gregory, D., and P. R. Rowntree, 1990: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Wea. Rev., 118, 1483–1506, https://doi.org/10.1175/1520-0493(1990)118<1483:AMFCSW>2.0.CO;2.CrossRefGoogle Scholar
  14. Harris, L. M., and S.-J. Lin, 2014: Global-to-regional nested grid climate simulations in the GFDL high resolution atmospheric model. J. Climate, 27, 4890–4910, https://doi.org/10.1175/JCLI-D-13-00596.1. CrossRefGoogle Scholar
  15. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a Global Climate Model. J. Climate, 6, 1825–1842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2.CrossRefGoogle Scholar
  16. Kitoh, A., H. Endo, K. K. Kumar, I. F. A. Cavalcanti, P. Goswami, and T. J. Zhou, 2013. Monsoons in a changing world: A regional perspective in a global context. J. Geophys. Res., 118(8), 3053–3065, https://doi.org/10.1002/jgrd.50258. Google Scholar
  17. Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9(2), 358–375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.CrossRefGoogle Scholar
  18. Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307, https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2.CrossRefGoogle Scholar
  19. Lock, A. P., A. R. Brown, M. R. Bush, G. M. Martin, and R. N. B. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 3187–3199, https://doi.org/10.1175/15200493(2000)128<3187:ANBLMS>2.0.CO;2.Google Scholar
  20. Ma, D., W. Boos, and Z. M. Kuang, 2014: Effects of orography and surface heat fluxes on the South Asian summer monsoon. J. Climate, 27(17), 6647–6659, https://doi.org/10.1175/JCLID-14-00138.1. CrossRefGoogle Scholar
  21. Nordeng, T. E., 1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. ECMWF Technical Memorandum, 26.Google Scholar
  22. Palmer, T. N., G. J. Shutts, and R. Swinbank, 1986: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parametrization. Quart. J. Roy. Meteor. Soc., 112, 1001–1039.CrossRefGoogle Scholar
  23. Parker, D. J., P. Willetts, C. Birch, A. G. Turner, J. H. Marsham, C. M. Taylor, S. Kolusu, and G. M. Martin, 2016: The interaction of moist convection and mid-level dry air in the advance of the onset of the Indian monsoon. Quart. J. Roy. Meteor. Soc., 142(699), 2256–2272, https://doi.org/10.1002/qj.2815. CrossRefGoogle Scholar
  24. Putman, W. M., and S.-J. Lin, 2007: Finite-volume transport on various cubed-sphere grids. J. Comput. Phys., 227, 55–78, https://doi.org/10.1016/j.jcp.2007.07.022. CrossRefGoogle Scholar
  25. Scaife, A. A., N. Butchart, C. D. Warner, and R. Swinbank, 2002: Impact of a spectral gravity wave parameterization on the stratosphere in the Met Office Unified Model. J. Atmos. Sci., 59, 1473–1489, https://doi.org/10.1175/1520-0469(2002)059<1473:IOASGW>2.0.CO;2.CrossRefGoogle Scholar
  26. Song, F. F., and T. J. Zhou, 2014. Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27(4), 1679–1697, https://doi.org/10.1175/JCLI-D-13-00248.1. CrossRefGoogle Scholar
  27. Sperber, K. R., H. Annamalai, I.-S. Kang, A. Kitoh, A. Moise, A. Turner, B. Wang, and T. Zhou, 2013: The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Climate Dyn., 41(9–10), 2711–2744, https://doi.org/10.1007/s00382-012-1607-6. Google Scholar
  28. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea.. Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.CrossRefGoogle Scholar
  29. Walters, D., and Coauthors, 2017: The Met Office Unified Model global atmosphere 6.0/6.1 and JULES global land 6.0/6.1 configurations. Geoscientific Model Development, 10, 1487–1520, https://doi.org/10.5194/gmd-2016-194. CrossRefGoogle Scholar
  30. Wang, B., and H. Lin, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate., 15(4), 386–398, https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.CrossRefGoogle Scholar
  31. Wang, Z. Q., G. Li, and S. Yang, 2017: Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Climate Dyn., https://doi.org/10.1007/s00382-017-3953-x. Google Scholar
  32. Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, and C. J. Morcrette, 2008a: PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quart. J. Roy. Meteor. Soc., 134, 2093–2107, https://doi.org/10.1002/qj.333. CrossRefGoogle Scholar
  33. Wilson, D. R., A. C. Bushell, A. M. Kerr-Munslow, J. D. Price, C. J. Morcrette, and A. Bodas-Salcedo, 2008b: PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quart. J. Roy. Meteor. Soc., 134, 2109–2125, https://doi.org/10.1002/qj.332. CrossRefGoogle Scholar
  34. Wood, N., and P. J. Mason, 1993: The pressure force induced by neutral, turbulent flow over hills. Quart. J. Roy. Meteor. Soc., 119, 1233–1267, https://doi.org/10.1002/qj.49711951402. CrossRefGoogle Scholar
  35. Wu, G. X., Y. M. Liu, B. He, Q. Bao, A. M. Duan, and F. F. Jin, 2012: Thermal controls on the Asian summer monsoon. Scientific Reports, 2, 404, https://doi.org/10.1038/srep00404. CrossRefGoogle Scholar
  36. Wu, G. X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8(4), 770–789, https://doi.org/10.1175/JHM609.1. CrossRefGoogle Scholar
  37. Xavier, P. K., C. Marzin, and B. N. Goswami, 2007: An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. Quart. J. Roy. Meteor. Soc., 133(624), 749–764, https://doi.org/10.1002/qj.45. CrossRefGoogle Scholar
  38. Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70(1B), 319–351, https://doi.org/10.2151/jmsj1965.70.1B319. CrossRefGoogle Scholar
  39. Ye, D. Z., 1981: Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14–19, https://doi.org/10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2.CrossRefGoogle Scholar
  40. Yu, H.-Y., Q. Bao, L.-J. Zhou, X.C. Wang, and Y.-M. Liu, 2014: Sensitivity of precipitation in aqua-planet experiments with an AGCM. Atmospheric and Oceanic Science Letters, 7, 1–6, https://doi.org/10.3878/j.issn.1674-2834.13.0033. CrossRefGoogle Scholar
  41. Zhou, L. J., and Coauthors, 2015: Global energy and water balance: characteristics from finite-volume atmospheric model of the IAP/LASG (FAMIL1). Journal of Advances in Modeling Earth Systems, 7, 1–20, https://doi.org/10.1002/2014MS000349. CrossRefGoogle Scholar
  42. Zhou, L.-J., Y.-M. Liu, Q. Bao, H.-Y. Yu, and G.-X. Wu, 2012: Computational performance of the high-resolution atmospheric model FAMIL. Atmospheric and Oceanic Science Letters, 5, 355–359, https://doi.org/10.1080/16742834.2012.11447024. CrossRefGoogle Scholar
  43. Zhou, T. J., and Coauthors, 2016: GMMIP (v1.0) contribution to CMIP6: Global monsoons model inter-comparison project. Geoscientific Model Development, 9(10), 3589–3604, https://doi.org/10.5194/gmd-9-3589-2016. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Kai Chi Wong
    • 1
  • Senfeng Liu
    • 2
    • 3
  • Andrew G. Turner
    • 1
  • Reinhard K. Schiemann
    • 1
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations