Advertisement

Advances in Atmospheric Sciences

, Volume 35, Issue 7, pp 757–770 | Cite as

Climate Change of 4°C Global Warming above Pre-industrial Levels

  • Xiaoxin Wang
  • Dabang Jiang
  • Xianmei Lang
Open Access
Original Paper

Abstract

Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4◦C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4◦C global warming will occur is 2084. Based on the median results of models that project a 4◦C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5◦C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.

Key words

4°C global warming timing climate change signal-to-noise ratio uncertainty 

摘要

使用39个CMIP5模式的试验数据, 预估了在RCP8.5情景下相对于工业革命前期4℃全球变暖发生的时间以及相应的全球温度和降水变化. 39个模式的中位数显示4℃全球变暖将发生在2084年, 其中有29个模式预估在21世纪全球达到4℃升温. 全球变暖4℃背景下, 年和季节增温在陆地高于海洋; 除夏季外, 最强增温发生在北极. 年和季节温度增幅均超过其自然内部变率, 全球平均的年和季节温度变化的信噪比分别为9.6和6.3~7.2, 其中最大值出现在低纬地区. 降水主要表现为在副热带减少, 在高纬增幅较大并超过其自然内部变率; 全球平均的年和季节降水变化的信噪比分别为0.5和0.2~0.4. 总体上, 多模式预估的温度变化有较高的一致性, 降水变化的不确定性较大, 特别是在中纬和低纬地区.

关键词

4℃全球变暖 时间 气候变化 信噪比 不确定性 

Notes

Acknowledgements

We sincerely thank the three anonymous reviewers for their insightful comments and suggestions to improve this manuscript. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was supported by the National Basic Research Program of China (Grant No. 2016YFA0602401) and the National Natural Science Foundation of China (Grant No. 41421004).

References

  1. Anderson, B. T., 2012: Intensification of seasonal extremes given a 2◦C global warming target. Climatic Change, 112, 325–337, https://doi.org/10.1007/s10584-011-0213-7. CrossRefGoogle Scholar
  2. Andrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones, 2010: Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett., 37, L14701, https://doi.org/10.1029/2010gl043991. CrossRefGoogle Scholar
  3. Betts, R. A., M. Collins, D. L. Hemming, C. D. Jones, J. A. Lowe, and M. G. Sanderson, 2011: When could global warming reach 4◦C? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 67–84, https://doi.org/10.1098/rsta.2010.0292. CrossRefGoogle Scholar
  4. Bintanja, R., and F. M. Selten, 2014: Future increases in arctic precipitation linked to local evaporation and sea-ice retreat. Nature, 509, 479–482, https://doi.org/10.1038/nature13259. CrossRefGoogle Scholar
  5. Collins, M., and C. A. Senior, 2002: Projections of future climate change. Weather, 57, 283–287, https://doi.org/10.1256/004316502320517371. CrossRefGoogle Scholar
  6. Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x. CrossRefGoogle Scholar
  7. Doblas-Reyes, F. J., and Coauthors, 2009: Addressing model uncertainty in seasonal and annual dynamical ensemble forecasts. Quart. J. Roy. Meteor. Soc., 135, 1538–1559, https://doi.org/10.1002/qj.464. CrossRefGoogle Scholar
  8. Friedlingstein, P., and Coauthors, 2014: Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci., 7, 709–715, https://doi.org/10.1038/ngeo2248. CrossRefGoogle Scholar
  9. Fung, F., A. Lopez, and M. New, 2011: Water availability in +2◦C and +4◦C worlds. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 99–116, https://doi.org/10.1098/rsta.2010.0293. CrossRefGoogle Scholar
  10. Giorgi, F., and X. Q. Bi, 2009: Time of emergence (TOE) of GHGforced precipitation change hot-spots. Geophys. Res. Lett., 36, L06709, https://doi.org/10.1029/2009gl037593. CrossRefGoogle Scholar
  11. Graversen, R. G., and M. H. Wang, 2009: Polar amplification in a coupled climate model with locked albedo. Climate Dyn., 33, 629–643, https://doi.org/10.1007/s00382-009-0535-6. CrossRefGoogle Scholar
  12. Gupta, A. S., N. C. Jourdain, J. N. Brown, and D. Monselesan, 2013: Climate drift in the CMIP5 models. J. Climate, 26, 8597–8615, https://doi.org/10.1175/JCLI-D-12-00521.1. CrossRefGoogle Scholar
  13. Hallegatte, S., and Coauthors, 2015: Shock Waves: Managing the Impacts of Climate Change on Poverty. World Bank, Washington, DC, 227 pp.CrossRefGoogle Scholar
  14. Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407–418, https://doi.org/10.1007/s00382-010-0810-6. CrossRefGoogle Scholar
  15. Hawkins, E., and R. Sutton, 2012: Time of emergence of climate signals. Geophys. Res. Lett., 39, L01702, https://doi.org/10.1029/2011GL050087. CrossRefGoogle Scholar
  16. Holland, M. M., and C. M. Bitz, 2003: Polar amplification of climate change in coupled models. Climate Dyn., 21, 221–232, https://doi.org/10.1007/s00382-003-0332-6. CrossRefGoogle Scholar
  17. Hu, Z. Z., A. Kumar, B. Jha, and B. H. Huang, 2012: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 2356–2373, https://doi.org/10.1175/JCLI-D-11-00323.1. CrossRefGoogle Scholar
  18. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, 1029–1136.Google Scholar
  19. James, R., and R. Washington, 2013: Changes in African temperature and precipitation associated with degrees of global warming. Climatic Change, 117, 859–872, https://doi.org/10.1007/s10584-012-0581-7. CrossRefGoogle Scholar
  20. Jiang, D. B., Y. Sui, and X. Lang, 2016: Timing and associated climate change of a 2◦C global warming. Int. J. Climatol., 36, 4512–4522, https://doi.org/10.1002/joc.4647. CrossRefGoogle Scholar
  21. Joshi, M., E. Hawkins, R. Sutton, J. Lowe, and D. Frame, 2011: Projections of when temperature change will exceed 2◦C above pre-industrial levels. Nat. Clim. Change, 1, 407–412, https://doi.org/10.1038/nclimate1261. CrossRefGoogle Scholar
  22. Kaplan, J. O., and M. New, 2006: Arctic climate change with a 2◦C global warming: timing, climate patterns and vegetation change. Climatic Change, 79, 213–241, https://doi.org/10.1007/s10584-006-9113-7. CrossRefGoogle Scholar
  23. King, A. D., and D. J. Karoly, 2017: Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environ. Res. Lett., 12, 114031, https://doi.org/10.1088/1748-9326/aa8e2c. CrossRefGoogle Scholar
  24. King, A. D., D. J. Karoly, and B. J. Henley, 2017: Australian climate extremes at 1.5 and 2 degrees of global warming. Nat. Clim. Change, 7, 412–416, https://doi.org/10.1038/nclimate3296. CrossRefGoogle Scholar
  25. Knutti, R., R. Furrer, C. Tebaldi, J. Cermak, and G. A. Meehl, 2010: Challenges in combining projections from multiple climate models. J. Climate, 23, 2739–2758, https://doi.org/10.1175/2009JCLI3361.1. CrossRefGoogle Scholar
  26. Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Horton, 2012: Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, 4074–4079, https://doi.org/10.1073/pnas.1114910109. CrossRefGoogle Scholar
  27. Lu, J. H., and M. Cai, 2009: Seasonality of polar surface warming amplification in climate simulations. Geophys. Res. Lett., 36, L16704, https://doi.org/10.1029/2009GL040133. CrossRefGoogle Scholar
  28. Macilwain, C., 2014: A touch of the random. Science, 344, 1221–1223, https://doi.org/10.1126/science.344.6189.1221. CrossRefGoogle Scholar
  29. Mahlstein, I., R. Knutti, S. Solomon, and R. W. Portmann, 2011: Early onset of significant local warming in low latitude countries. Environ. Res. Lett., 6, 034009, https://doi.org/10.1088/1748-9326/6/3/034009. CrossRefGoogle Scholar
  30. May, W., 2012: Assessing the strength of regional changes in nearsurface climate associated with a global warming of 2◦C. Climatic Change, 110, 619–644, https://doi.org/10.1007/s10584-011-0381-5. CrossRefGoogle Scholar
  31. Randalls, S., 2010: History of the 2◦C climate target. WIREs Climate Change, 1, 598–605, https://doi.org/10.1002/wcc.62. CrossRefGoogle Scholar
  32. Riahi, K., and Coauthors, 2011: RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109, 33–57, https://doi.org/10.1007/s10584-011-0149-y. CrossRefGoogle Scholar
  33. Rinke, A., P. Marbaix, and K. Dethloff, 2004: Internal variability in Arctic regional climate simulations: case study for the SHEBA year. Climate Research, 27, 197–209, https://doi.org/10.3354/cr027197. CrossRefGoogle Scholar
  34. Rogelj, J., and Coauthors, 2011: Emission pathways consistent with a 2◦C global temperature limit. Nat. Clim. Change, 1, 413–418, https://doi.org/10.1038/nclimate1258. CrossRefGoogle Scholar
  35. Rogelj, J., G. Luderer, R. C. Pietzcker, E. Kriegler, M. Schaeffer, V. Krey, and K. Riahi, 2015: Energy system transformations for limiting end-of-century warming to below 1.5◦C. Nat. Clim. Change, 5, 519–527, https://doi.org/10.1038/nclimate2572. CrossRefGoogle Scholar
  36. Schleussner, C. F., and Coauthors, 2016a: Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change, 6, 827–835, https://doi.org/10.1038/nclimate 3096.CrossRefGoogle Scholar
  37. Schleussner, C. F., and Coauthors, 2016b: Differential climate impacts for policy-relevant limits to global warming: the case of 1.5◦C and 2◦C. Earth System Dynamics, 7, 327–351, https://doi.org/10.5194/esd-7-327-2016. CrossRefGoogle Scholar
  38. Sejas, S. A., O. S. Albert, M. Cai, and Y. Deng, 2014: Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4. Environ. Res. Lett., 9, 124005, https://doi.org/10.1088/1748-9326/9/12/124005. CrossRefGoogle Scholar
  39. Steinacher, M., F. Joos, and T. F. Stocker, 2013: Allowable carbon emissions lowered by multiple climate targets. Nature, 499, 197–201, https://doi.org/10.1038/nature12269. CrossRefGoogle Scholar
  40. Sui, Y., X. M. Lang, and D. B. Jiang, 2015: Temperature and precipitation signals over China with a 2◦C global warming. Climate Research, 64, 227–242, https://doi.org/10.3354/cr01328. CrossRefGoogle Scholar
  41. Sutton, R. T., B. Dong, and J. M. Gregory, 2007: Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett., 34, L02701, https://doi.org/10.1029/2006gl028164. CrossRefGoogle Scholar
  42. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bul. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1. CrossRefGoogle Scholar
  43. Vautard, R., and Coauthors, 2014: The European climate under a 2◦C global warming. Environ. Res. Lett., 9, 034006, https://doi.org/10.1088/1748-9326/9/3/034006. CrossRefGoogle Scholar
  44. Wang, L., J. B. Huang, Y. Luo, Y. Yao, and Z. C. Zhao, 2015: Changes in extremely hot summers over the global land area under various warming targets. PLoS One, 10, e0130660, https://doi.org/10.1371/journal.pone.0130660. CrossRefGoogle Scholar
  45. Wang, Z. L., L. Lin, X. Y. Zhang, H. Zhang, L. K. Liu, and Y. Y. Xu, 2017: Scenario dependence of future changes in climate etremes under 1. 5◦C and 2◦C global warming. Sci. Rep., 7, 46432, https://doi.org/10.1038/srep46432. CrossRefGoogle Scholar
  46. Winton, M., 2006: Amplified Arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett., 33, L03701, https://doi.org/10.1029/2005gl025244. Google Scholar
  47. Woldemeskel, F. M., A. Sharma, B. Sivakumar, and R. Mehrotra, 2015: Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. J. Geophys. Res. Atmos., 121, 3–17, https://doi.org/10.1002/2015JD023719. CrossRefGoogle Scholar
  48. World Bank, 2012: Turn down the heat: Why a 4◦C warmer world must be avoided. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC.Google Scholar
  49. World Bank, 2013: Turn down the heat: Climate extremes, regional impacts, and the case for resilience. A report for the World Bank by the Potsdam Institute for Climate Impact Research and Climate Analytics. World Bank, Washington, DC.Google Scholar
  50. Zhang, L., Y. H. Ding, T. W. Wu, X. G. Xin, Y. W. Zhang, and Y. Xu, 2013: The 21st century annual mean surface air temperature change and the 2◦C warming threshold over the globe and China as projected by the CMIP5 models. Acta Meteorologica Sinica, 71, 1047–1060, https://doi.org/10.11676/qxxb2013.087. (in Chinese with English abstract)Google Scholar
  51. Zelazowski, P., Y. Malhi, C. Huntingford, S. Sitch, and J. B. Fisher, 2011: Changes in the potential distribution of humid tropical forests on a warmer planet. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 137–160, https://doi.org/10.1098/rsta.2010. 0238.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  • Xiaoxin Wang
    • 1
    • 5
  • Dabang Jiang
    • 1
    • 2
    • 4
    • 5
  • Xianmei Lang
    • 1
    • 2
    • 3
  1. 1.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  4. 4.Joint Laboratory for Climate and Environmental Change at Chengdu University of Information TechnologyChengduChina
  5. 5.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations