Skip to main content
Log in

Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

This study analyzes the impact of the winter North Pacific Oscillation (NPO) on the surface air temperature (SAT) variations over Eurasia and North America based on six different NPO indices. Results show that the influences of the winter NPO on the SAT over Eurasia and North America are sensitive to the definition of the NPO index. The impact of the winter NPO on the SAT variations over Eurasia (North America) is significant (insignificant) when the anticyclonic anomaly associated with the NPO index over the North Pacific midlatitudes shifts westward and pronounced northerly wind anomalies appear around Lake Baikal. By contrast, the impact of the winter NPO on the SAT variations over Eurasia (North America) is insignificant (significant) when the anticyclonic anomaly over the North Pacific related to the NPO index shifts eastward and the associated northerly wind anomalies to its eastern flank extend to North America. The present study suggests that the NPO definition should be taken into account when analyzing the impact of the winter NPO on Eurasian and North American SAT variations.

摘 要

基于六种不同的指数定义方法, 本文研究了冬季北太平洋涛动(North Pacific Oscillation, NPO)对欧亚大陆和北美地区地表气温(surface air temperature, SAT)变率的影响. 结果表明, 冬季NPO对欧亚大陆和北美SAT的影响敏感于NPO指数的定义方式. 当与NPO相联系的北太平洋中纬度反气旋异常西移, 贝加尔湖附近出现显著的异常偏北风, 则冬季NPO对欧亚大陆(北美)SAT的影响是显著(不显著)的. 反之, 当与NPO相联系的北太平洋反气旋异常东移, 且其东侧的偏北风异常延伸到北美地区, 则冬季NPO对欧亚大陆(北美)SAT的影响不显著(显著). 本文的研究结果表明, 当分析冬季NPO对欧亚大陆和北美SAT变率的影响时需谨慎考虑NPO指数的定义方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The impact of extratropical atmospheric variability on ENSO: Testing the seasonal footprinting mechanism using coupled model experiments. J. Climate, 23, 2885–2901, https://doi.org/10.1175/2010JCLI3205.1.

    Article  Google Scholar 

  • Baxter, S., and S. Nigam, 2015: Key role of the North Pacific Oscillation-West Pacific Pattern in generating the extreme 2013/14 North American winter. J. Climate, 28, 8109–8117, https://doi.org/10.1175/JCLI-D-14-00726.1.

    Article  Google Scholar 

  • Branstator, G., 1995: Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52, 207–226, https://doi.org/10.1175/1520-0469(1995)052 <0207:OOSTAB>2.0.CO;2.

    Article  Google Scholar 

  • Cai, M., S. Yang, H. M. Van Den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus A: Dynamic Meteorology and Oceanography, 59, 127–140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.

    Article  Google Scholar 

  • Chen, D., H. J. Wang, J. P. Liu, and G. P. Li, 2015a: Why the spring North Pacific Oscillation is a predictor of typhoon activity over the Western North Pacific. International Journal of Climatology, 35, 3353–3361, https://doi.org/10.1002/joc.4213.

    Article  Google Scholar 

  • Chen, S. F., and R. G. Wu, 2017: Impacts of winter NPO on subsequent winter ENSO: Sensitivity to the definition of NPO index. Climate Dyn., https://doi.org/10.1007/s00382-017-3615-z. (in Press)

    Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989, https://doi.org/10.1007/s00382-012-1654-z.

    Article  Google Scholar 

  • Chen, S. F., B. Yu, and W. Chen, 2015b: An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dyn., 44, 1109–1126, https://doi.org/10.1007/s00382-014-2152-2.

    Article  Google Scholar 

  • Chen, S. F., W. Chen, B. Yu, and H. F. Graf, 2013: Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys. Res. Lett., 40, 6384–6389, https://doi.org/10.1002/2013GL058628.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi. org/10.1002/qj.828.

    Article  Google Scholar 

  • Furtado, J. C., E. Di Lorenzo, B. T. Anderson, and N. Schneider, 2012: Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Climate Dyn., 39, 2833–2846, https://doi.org/10.1007/s00382-011-1245-4.

    Article  Google Scholar 

  • Guo, D., and Z. B. Sun, 2004: Relationships of winter North Pacific Oscillation anomalies with the East Asian Winter Monsoon and the weather and climate in China. Journal of Nanjing Institute of Meteorology, 27, 461–470, https://doi.org/10.3969/j.issn.1674-7097.2004.04.004. (in Chinese)

    Google Scholar 

  • Hameed, S., and I. Pittalwala, 1991: The North Pacific Oscillation: Observations compared with simulations in a general circulation model. Climate Dyn., 6, 113–122, https://doi.org/10.1007/BF00209984.

    Article  Google Scholar 

  • Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595–1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.

    Article  Google Scholar 

  • Kutzbach, J. E., 1970: Large-scale features of monthly mean northern hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98, 708–716, https://doi.org/10.1175/1520-0493(1970)098<0708:LSFOMM>2.3.CO;2.

    Article  Google Scholar 

  • Lau, N.-C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718–2743, https://doi.org/10.1175/1520-0469(1988)045,2718:VOTOMS.2.0.CO;2.

    Article  Google Scholar 

  • Lee, S.-S., J. Y. Lee, B. Wang, K.-J. Ha, K. Y. Heo, F. F. Jin, D. M. Straus, and J. Shukla, 2012a: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313–327, https://doi.org/10.1007/s00382-011-1188-9.

    Article  Google Scholar 

  • Lee, Y.-Y., J.-S. Kug, G.-H. Lim, and M. Watanabe, 2012b: Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. International Journal of Climatology, 32, 1128–1134, https://doi.org/10.1002/joc.2329.

    Article  Google Scholar 

  • Li, C. Y., and G. L. Li, 2000: The NPO/NAO and interdecadal climate variation in China. Adv. Atmos. Sci., 17, 555–561, https://doi.org/10.1007/s00376-000-0018-5.

    Article  Google Scholar 

  • Linkin, M. E., and S. Nigam, 2008: The north pacific oscillation-West Pacific teleconnection pattern: Mature-phase structure and winter impacts. J. Climate, 21, 1979–1997, https://doi. org/10.1175/2007JCLI2048.1.

    Article  Google Scholar 

  • Willmott, C. J., and K. Matsuura, 2001: Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999), http://climate.geog.udel.edu/~climate/html pages/README.ghcn ts2.html.

    Google Scholar 

  • Pak, G., Y.-H. Park, F. Vivier, Y.-O. Kwon, and K.-I. Chang, 2014: Regime-dependent nonstationary relationship between the East Asian winter monsoon and North Pacific oscillation. J. Climate, 27, 8185–8204, https://doi.org/10.1175/JCLI-D-13-00500.1.

    Article  Google Scholar 

  • Rogers, J. C., 1981: The North Pacific oscillation. International Journal of Climatology, 1, 39–57, https://doi.org/10.1002/joc.3370010106.

    Article  Google Scholar 

  • Song, L. Y., Y. Li, and W. S. Duan, 2016: The influence of boreal winter extratropical North Pacific Oscillation on Australian spring rainfall. Climate Dyn., 47, 1181–1196, https://doi.org/10.1007/s00382-015-2895-4.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, https://doi.org/10.1029/98GL00950.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett., 28, 3923–3926, https://doi.org/10.1029/2001GL013435.

    Article  Google Scholar 

  • Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2003a: The seasonal footprinting mechanism in the CSIRO general circulation models. J. Climate, 16, 2653–2667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2.

    Article  Google Scholar 

  • Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003b: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. J. Climate, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.

    Article  Google Scholar 

  • Walker, G. T., and E. W. Bliss, 1932: World weather V. Memoirs of the Royal Meteorological Society, 4, 53–84.

    Google Scholar 

  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784–812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    Article  Google Scholar 

  • Wang, H. J., J. Q. Sun, and K. Fan, 2007a: Relationships between the North Pacific Oscillation and the typhoon/hurricane frequencies. Science in China Series D: Earth Sciences, 50, 1409–1416, https://doi.org/10.1007/s11430-007-0097-6.

    Article  Google Scholar 

  • Wang, L., W. Chen, and R. H. Huang, 2007b: Changes in the variability of North Pacific Oscillation around 1975/1976 and its relationship with East Asian winter climate. J. Geophys. Res., 112, D11110, https://doi.org/10.1029/2006JD008054.

    Article  Google Scholar 

  • Yan, H. S., Y. X. Wan, and J. G. Cheng, 2005: Interannual and interdecadal variations in atmospheric circulation factors and rainfall in China and their relationship. Acta Meteorologica Sinica, 19, 253–261.

    Google Scholar 

  • Yu, J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24, 708–720, https://doi.org/10.1175/2010JCLI3688.1.

    Article  Google Scholar 

  • Zhou, B. T., H. J. Wang, and X. Cui, 2008: Significant relationship between Hadley circulation and North Pacific Oscillation. Chinese Journal of Geophysics, 51, 999–1006, https://doi.org/10.3321/j.issn:0001-5733.2008.04.007. (in Chinese)

    Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive suggestions and comments, which helped to improve the paper. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41605050, 41605031, 41530425, 41775080, and 41661144016), the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (Grant No. 2016QNRC001), and the China Postdoctoral Science Foundation (Grant No. 2017T100102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangfeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Song, L. Impact of the Winter North Pacific Oscillation on the Surface Air Temperature over Eurasia and North America: Sensitivity to the Index Definition. Adv. Atmos. Sci. 35, 702–712 (2018). https://doi.org/10.1007/s00376-017-7111-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7111-5

Key words

关键词

Navigation