Skip to main content
Log in

Greenland ice sheet contribution to future global sea level rise based on CMIP5 models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Sea level rise (SLR) is one of the major socioeconomic risks associated with global warming. Mass losses from the Greenland ice sheet (GrIS) will be partially responsible for future SLR, although there are large uncertainties in modeled climate and ice sheet behavior. We used the ice sheet model SICOPOLIS (SImulation COde for POLythermal Ice Sheets) driven by climate projections from 20 models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) to estimate the GrIS contribution to global SLR. Based on the outputs of the 20 models, it is estimated that the GrIS will contribute 0–16 (0–27) cm to global SLR by 2100 under the Representative Concentration Pathways (RCP) 4.5 (RCP 8.5) scenarios. The projected SLR increases further to 7–22 (7–33) cm with 2×basal sliding included. In response to the results of the multimodel ensemble mean, the ice sheet model projects a global SLR of 3 cm and 7 cm (10 cm and 13 cm with 2×basal sliding) under the RCP 4.5 and RCP 8.5 scenarios, respectively. In addition, our results suggest that the uncertainty in future sea level projection caused by the large spread in climate projections could be reduced with model-evaluation and the selective use of model outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthern, R. J., and G. H. Gudmundsson, 2010: Initialization of ice sheet forecasts viewed as an inverse Robin problem. J. Glaciol., 56, 527–533.

    Article  Google Scholar 

  • Bindoff, N. L., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon, et al., Eds., Cambridge University Press, 385–432.

    Google Scholar 

  • Bindschadler, R., 2006: Hitting the ice sheets where it hurts. Science, 311, 1720–1721.

    Article  Google Scholar 

  • Bindschadler, R. A., and Coauthors, 2013: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project). J. Glaciol., 59, 195–224.

    Article  Google Scholar 

  • Bougamont, M., J. L. Bamber, J. K. Ridley, R. M. Gladstone, W. Greuell, E. Hanna, A. J. Payne, and I. Rutt, 2007: Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett., 34, L17501, doi: 10.1029/2007GL030700.

    Article  Google Scholar 

  • Calov, R., and R. Greve, 2005: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol., 51, 173–175.

    Article  Google Scholar 

  • Calov, R., and Coauthors, 2010: Results from the Ice-Sheet Model Intercomparison Project Heinrich Event INtercOmparison (ISMIP HEINO). J. Glaciol., 56, 371–383.

    Article  Google Scholar 

  • Chen, L., O. Johannessen, H. Wang, and A. Ohmura, 2011: Accumulation over the Greenland ice sheet as represented in reanalysis data. Adv. Atmos. Sci., 28, 1030–1038, doi: 10.1007/s00376-010-0150-9.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, doi: 10.1029/2009GL038110.

  • Fausto, R. S., A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen, 2009: A new present-day temperature parameterization for Greenland. J. Glaciol., 55, 95–105.

    Article  Google Scholar 

  • Franco, B., X. Fettweis, M. Erpicum, and S. Nicolay, 2011: Present and future climates of the Greenland ice sheet according to the IPCC AR4 models. Climate Dyn., 36, 1897–1918.

    Article  Google Scholar 

  • Gillet-Chaulet, F., and Coauthors, 2012: Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. The Cryosphere, 6, 1561–1576.

    Article  Google Scholar 

  • Graversen, R. G., S. Drijfhout, W. Hazeleger, R. van de Wal, R. Bintanja, and M. Helsen, 2011: Greenland’s contribution to global sea-level rise by the end of the 21st century. Climate Dyn., 37, 1427–1442.

    Article  Google Scholar 

  • Greve, R., 1995: Thermomechanisches Verhalten polythermer Eisschilde-Theorie, Analytik, Numerik. PhD thesis, Darmstadt Univ. of Technology, Darmstadt, Germany, 226 pp.

    Google Scholar 

  • Greve, R., 1997a: A continuum-mechanical formulation for shallow polythermal ice sheets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 355, 921–974.

    Article  Google Scholar 

  • Greve, R., 1997b: Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate, 10, 901–918.

    Article  Google Scholar 

  • Greve, R., 2005: Relation of measured basal temperatures and the spatial distribution of the geothermal heat flux for the Greenland ice sheet. Annals of Glaciology, 42, 424–432.

    Article  Google Scholar 

  • Greve, R., and U. C. Herzfeld, 2013: Resolution of ice streams and outlet glaciers in large-scale simulations of the Greenland ice sheet. Annals of Glaciology, 54, 209–220.

    Article  Google Scholar 

  • Greve, R., F. Saito, and A. Ace-Ouchi, 2011: Initial results of the SeaRISE numerical experiments with the models SICOPOLIS and IcIES for the Greenland ice sheet. Annals of Glaciology, 52, 23–30.

    Article  Google Scholar 

  • Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geosci., 1, 659–664.

    Article  Google Scholar 

  • Huybrechts, P., J. Gregory, I. Janssens, and M. Wild, 2004: Modelling Antarctic and Greenland volume changes during the 20th and 21st centuries forced by GCM time slice integrations. Global and Planetary Change, 42, 83–105.

    Article  Google Scholar 

  • Joughin, I., B. E. Smith, I. M. Howat, T. Scambos, and T. Moon, 2010: Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56, 415–430.

    Article  Google Scholar 

  • Meehl, G., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. Mitchell, R. Stouffer, and K. Taylor, 2007a: The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2007b: Global Climate Projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 747–846.

    Google Scholar 

  • Meinshausen, M., and Coauthors, 2011: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213–241.

    Article  Google Scholar 

  • Moon, T., I. Joughin, B. Smith, and I. Howat, 2012: 21st-century evolution of Greenland outlet glacier velocities. Science, 336, 576–578.

    Article  Google Scholar 

  • Moss, R. H., and Coauthors, 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  Google Scholar 

  • Price, S. F., A. J. Payne, I. M. Howat, and B. E. Smith, 2011: Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl. Acad. Sci., 108, 8978–8983.

    Article  Google Scholar 

  • Reeh, N., 1991: Parameterization of melt rate and surfaee temperature on the Greenland ice sheet. Polarforschung, 59, 113–128.

    Google Scholar 

  • Seddik, H., R. Greve, T. Zwinger, F. Gillet-Chaulet, and O. Gagliardini, 2012: Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice. J. Glaciol., 58, 427–440.

    Article  Google Scholar 

  • Shapiro, N. M., and M. H. Ritzwoller, 2004: Inferring surface heat flux distributions guided by a global seismic model: Particular application to Antarctica. Earth and Planetary Science Letters, 223, 213–224.

    Article  Google Scholar 

  • Sørensen, L. S., S. Simonsen, K. Nielsen, P. Lucas-Picher, G. Spada, G. Adalgeirsdottir, R. Forsberg, and C. Hvidberg, 2011: Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—The impact of interpolation, sampling and firn density. The Cryosphere, 5, 173–186.

    Article  Google Scholar 

  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res, 106, 7183–7192.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • van den Broeke, M. R., J. Bamber, J. Lenaerts, and E. Rignot, 2011: Ice sheets and sea level: Thinking outside the box. Surveys in Geophysics, 32, 495–505.

    Article  Google Scholar 

  • Walsh, J. E., W. L. Chapman, V. Romanovsky, J. H. Christensen, and M. Stendel, 2008: Global climate model performance over Alaska and Greenland. J. Climate, 21, 6156–6174.

    Article  Google Scholar 

  • Winkelmann, R., and A. Levermann, 2012: Linear response functions to project contributions to future sea level. Climate. Dyn., doi 10.1007/s00382-012-1471-4.

    Google Scholar 

  • Xu, Y., X. Gao, and F. Giorgi, 2010: Upgrades to the reliability ensemble averaging method for producing probabilistic climatechange projections. Climate Research, 41, 61–81.

    Article  Google Scholar 

  • Zwally, H. J., and Coauthors, 2011: Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003-07 versus 1992–2002. J. Glaciol., 57, 88–102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Q., Wang, H., Johannessen, O.M. et al. Greenland ice sheet contribution to future global sea level rise based on CMIP5 models. Adv. Atmos. Sci. 31, 8–16 (2014). https://doi.org/10.1007/s00376-013-3002-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-3002-6

Key words

Navigation