Skip to main content
Log in

The effect of typhoon-induced SST cooling on typhoon intensity: The case of Typhoon Chanchu (2006)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In order to investigate air-sea interactions during the life cycle of typhoons and the quantificational effects of typhoon-induced SST cooling on typhoon intensity, a mesoscale coupled air-sea model is developed based on the non-hydrostatic mesoscale model MM5 and the regional ocean model POM, which is used to simulate the life cycle of Typhoon Chanchu (2006) from a tropical depression to a typhoon followed by a steady weakening. The results show that improved intensity prediction is achieved after considering typhoon-induced SST cooling; the trend of the typhoon intensity change simulated by the coupled model is consistent with observations. The weakening stage of Typhoon Chanchu from 1200 UTC 15 May to 1800 UTC 16 May can be well reproduced, and it is the typhoon-induced SST cooling that makes Chanchu weaken during this period. Analysis reveals that the typhoon-induced SST cooling reduces the sensible and latent heat fluxes from the ocean to the typhoon’s vortex, especially in the inner-core region. In this study, the average total heat flux in the inner-core region of the typhoon decrease by 57.2%, whereas typhoon intensity weakens by 46%. It is shown that incorporation of the typhoon-induced cooling, with an average value of 2.17°C, causes a 46-hPa weakening of the typhoon, which is about 20 hPa per 1°C change in SST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, S., L. Xie, and S. Raman, 2004: A numerical study of a TOGA-COARE squall-line using a coupled mesoscale atmosphere-ocean model. Adv. Atmos. Sci., 21(5), 708–716.

    Article  Google Scholar 

  • Bender, M. A., and I. Ginis, 2000: Real-case simulations of hurricane-ocean interaction using a high-resolution coupled model: effects on hurricane intensity. Mon. Wea. Rev., 128, 917–945.

    Article  Google Scholar 

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    Article  Google Scholar 

  • Chan, J. C. L., Y. Duan, and L. K. Shay, 2001: Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J. Atmos. Sci., 58, 154–172.

    Article  Google Scholar 

  • Chang, S. W., and R. A. Anthes, 1978: Numerical simulation of ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.

    Article  Google Scholar 

  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1795.

    Article  Google Scholar 

  • Davis, C. A., and L. F. Bosart, 2001: Numerical simulations of the genesis of hurricane Diana (1984). Part I: Control Simulation. Mon. Wea. Rev., 129, 1859–1881.

    Article  Google Scholar 

  • Elsberry, R. L., T. Fraim, and R. Trapnell, 1976: A mixed layer model of the ocean thermal response to hurricane. J. Geophys. Res., 81(C6), 1153–1162.

    Article  Google Scholar 

  • Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones, Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    Article  Google Scholar 

  • Emanuel, K. A., 1991: The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196.

    Article  Google Scholar 

  • Falkovich, A. I., A. P. Khain, and I. Ginis, 1995: Motion and evolution of binary tropical cyclones in a coupled atmosphere-ocean numerical model. Mon. Wea. Rev., 123, 1345–1363.

    Article  Google Scholar 

  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.

    Article  Google Scholar 

  • Huang, L. W., G. X. Wu, and R. C. Yu, 2005: The effects of mesoscale air-sea interaction on heavy rain in two typhoon processes. Acta Meteorologica Sinica, 63(4), 455–467. (in Chinese)

    Google Scholar 

  • Khain, A. P., and I. D. Ginis, 1991: The mutual response of a moving tropical cyclone and the ocean. Beitr. Phys. Atmos., 64, 125–142.

    Google Scholar 

  • Price, J. F., 1981: Upper ocean response to a typhoon. J. Phys. Oceanogr., 11, 153–175.

    Article  Google Scholar 

  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.

    Article  Google Scholar 

  • Ren, X., and W. Perrie, 2006: Air-sea interaction of typhoon Sinlaku (2002) simulated by the Canadian MC2 model. Adv. Atmos. Sci., 23(4), 521–530, doi: 10.1007/s00376-006-0521-4.

    Article  Google Scholar 

  • Sakaida, F., H. Kawamura, and Y. Toba, 1998: Sea surface cooling caused by typhoons in the Tohuku area in August 1989. J. Geophys. Res., 103(C1), 1053–1065.

    Article  Google Scholar 

  • Schade, L. R., and K. A. Emanuel, 1999: The ocean’s effect on the intensity of tropical cyclones: results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642–651.

    Article  Google Scholar 

  • Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to hurricane Gilbert. J. Geophys. Res., 97(C12), 20227–20248.

    Article  Google Scholar 

  • Shay, L. K., J. G. Gustavo, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.

    Article  Google Scholar 

  • Sheng, J., X.-M. Zhai, and R. J. Greatbatch, 2006: Numerical study of the storm-induced circulation on the Scotian Shelf during Hurricane Juan using a nested-grid ocean model. Progress in Oceanography, 70, 233–254.

    Article  Google Scholar 

  • Sutyrin, G. G., and A. P. Khain, 1979: Interaction of ocean and the atmosphere in the area of moving tropical cyclone. Dokl. Akad. Aauk USSR, 249, 467–470.

    Google Scholar 

  • Sutyrin, G. G., and A. P. Khain, 1984: On the effect of air-ocean interaction on the intensity of a moving tropical cyclone. Atmospheric and Oceanic Physics, 20, 787–794.

    Google Scholar 

  • Wada, A., 2005: Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex. J. Phys. Oceanogr., 61, 41–57.

    Article  Google Scholar 

  • Warner, T. T., M. N. Lakhtakia, J. D. Doyle, and R. A. Pearson, 1990: Marine atmospheric boundary layer circulations forced by Gulf Stream sea surface temperature gradients. Mon. Wea. Rev., 118, 309–323.

    Article  Google Scholar 

  • Weatherford, C. L., and W. M. Gray, 1988: Typhoon structure as revealed by aircraft reconnaissance. Part I: Data analysis and climatology. Mon. Wea. Rev., 116, 1032–1043.

    Article  Google Scholar 

  • Zhang, Y. C., and Y. F. Qian, 1999: Numerical simulation of the regional ocean circulation in the coastal area of China. Adv. Atmos. Sci., 16(3), 443–450.

    Article  Google Scholar 

  • Zhu, H., W. Ulrich, and R. K. Smith, 2004: Ocean effects on tropical cyclone intensification and inner-core asymmetries. J. Atmos. Sci., 61, 1245–1258.

    Article  Google Scholar 

  • Zhu, T., and D.-L. Zhang, 2006: The impact of the storm-induced SST cooling on hurricane intensity. Adv. Atmos. Sci., 23(1), 14–22.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhong  (钟 中).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Zhong, Z. & Liu, C. The effect of typhoon-induced SST cooling on typhoon intensity: The case of Typhoon Chanchu (2006). Adv. Atmos. Sci. 25, 1062–1072 (2008). https://doi.org/10.1007/s00376-008-1062-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-1062-9

Key words

Navigation