Skip to main content
Log in

Targeted regulation of the microbiome by green manuring to promote tobacco growth

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Green manuring is an established strategy for soil nutrient enrichment; however, its effects on the soil microbiome remain unclear. In this study, we assessed the impact of green manuring on soil microbial diversity, functional profiles, and enzymatic activities in a pot experiment involving tobacco rotation with three types of green manure: smooth vetch, ryegrass, and radish. Our data revealed distinct temporal shifts in bacterial communities under diverse tillage while fungi communities showed obvious clustering between fallow and green manuring. Moreover, green manure-sensitive bacterial and fungal taxa constitute a greater proportion of total sequences than their fallow-sensitive counterparts, indicating a more pronounced influence of green manuring on microbial communities. Functionally, green manuring augmented the relative abundance of N-cycle-related genes and was strongly associated with elevated N-acetyl-glucosaminidase activity. Notably, a subset of green manure-sensitive microbes exhibited significant antagonistic interactions with the fungal pathogens Fusarium spp. and Fusarium solani, and synergistic interactions with the beneficial bacteria Pseudomonas spp. Collectively, these findings suggest that green manuring promotes an optimized soil environment characterized by efficient nutrient cycling and diminished pathogenicity, thereby providing a scientific basis for targeted microbiota manipulation in agricultural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Raw sequencing data are available in the NCBI Sequence Read Archive (Study ID: PRJNA937072).

References

  • Abeywickrama PD, Qian N, Jayawardena RS, Li Y, Zhang W, Guo K, Zhang L, Zhang G, Yan J, Li X, Guo Z, Hyde KD, Peng Y, Zhao W (2023) Endophytic fungi in green manure crops; friends or foe? Mycosphere 14:1–106

    Article  Google Scholar 

  • Acharya J, Moorman TB, Kaspar TC, Lenssen AW, Robertson AE (2020) Cover crop rotation effects on growth and development, seedling disease, and yield of corn and soybean. Plant Dis 104:677–687

    Article  CAS  PubMed  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Acharya J, Moorman TB, Robertson AE, Kaspar TC (2016) The potential for cereal rye cover crops to host corn seedling pathogens. Phytopathology 106:591–601

    Article  CAS  PubMed  Google Scholar 

  • Beier S, Bertilsson S (2013) Bacterial chitin degradation-mechanisms and ecophysiological strategies. Front Microbiol 4:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    Article  PubMed  Google Scholar 

  • Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk PM, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224

    Article  CAS  PubMed  Google Scholar 

  • Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017) Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15:e2001793

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai YN, Schachtman DP (2022) Root exudates impact plant performance under abiotic stress. Trends Plant Sci 27:80–91

    Article  CAS  PubMed  Google Scholar 

  • Chen JK, Shen CR, Yeh CH, Fang BS, Huang TL, Liu CL (2011) N-acetyl glucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis. Int J Mol Sci 12:1187–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinta YD, Uchida Y, Araki H (2021) Roles of soil bacteria and fungi in controlling the availability of nitrogen from cover crop residues during the microbial hot moments. Appl Soil Ecol 168:104135

    Article  Google Scholar 

  • Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM (2019) Ecology and evolution of plant microbiomes. Annu Rev Microbiol 73:69–88

    Article  CAS  PubMed  Google Scholar 

  • Couëdel A, Alletto L, Justes É (2018) Crucifer-legume cover crop mixtures provide effective sulphate catch crop and sulphur green manure services. Plant Soil 426:61–76

    Article  Google Scholar 

  • Csárdi G, Nepusz T (2006) The igraph software package for complex network research. Complex Systems 1695:1–9

    Google Scholar 

  • Cui Y, Fang L, Guo X, Wang X, Zhang Y, Li P, Zhang X (2018) Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. Soil Biol Biochem 116:11–21

    Article  CAS  Google Scholar 

  • De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684

    Article  Google Scholar 

  • Ding Y, Chen Y, Lin Z, Tuo Y, Li H, Wang Y (2021) Differences in soil microbial community composition between suppressive and root rot-conducive in tobacco fields. Curr Microbiol 78:624–633

    Article  CAS  PubMed  Google Scholar 

  • Dini-Andreote F, Stegen JC, Van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci U S A 112:E1326–E1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine D, Eriksen J, Sørensen P (2020) Cover crop and cereal straw management influence the residual nitrogen effect. Eur J Agron 118:126100

    Article  CAS  Google Scholar 

  • Gao S, Cao W, Zhou G, Rees RM (2021) Bacterial communities in paddy soils changed by milk vetch as green manure: a study conducted across six provinces in South China. Pedosphere 31:521–530

    Article  CAS  Google Scholar 

  • Gao S, Cao W, Zou C, Gao J, Huang J, Bai J, Zeng N, Shimizu KY, Wright A, Dou F (2018) Ammonia-oxidizing archaea are more sensitive than ammonia-oxidizing bacteria to long-term application of green manure in red paddy soil. Appl Soil Ecol 124:185–193

    Article  Google Scholar 

  • Garland G, Edlinger A, Banerjee S, Degrune F, García-Palacios P, Pescador DS, Herzog C, Romdhane S, Saghai A, Spor A, Wagg C, Hallin S, Maestre FT, Philippot L, Rillig MC, van der Heijden MGA (2021) Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat Food 2:28–37

    Article  PubMed  Google Scholar 

  • German DP, Chacon SS, Allison SD (2011) Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92:1471–1480

    Article  PubMed  Google Scholar 

  • Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, Xu Y, Shen Q, Kümmerli R, Jousset A (2020) Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol 5:1002–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    Article  CAS  PubMed  Google Scholar 

  • Hartman K, van der Heijden MGA, Wittwer RA, Banerjee S, Walser JC, Schlaeppi K (2018) Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Hartmann M, Widmer F (2006) Community structure analyses are more sensitive to differences in soil bacterial communities than anonymous diversity indices. Appl Environ Microbiol 72:7804–7812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández DL, Hobbie SE (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335:397–411

    Article  Google Scholar 

  • Hirsh SM, Duiker SW, Graybill J, Nichols K, Weil RR (2021) Scavenging and recycling deep soil nitrogen using cover crops on mid-Atlantic USA farms. Agric Ecosyst Environ 309:107274

    Article  CAS  Google Scholar 

  • Hobbie JE, Hobbie EA (2013) Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front Microbiol 4:324

    Article  PubMed  PubMed Central  Google Scholar 

  • Jahanzad E, Barker AV, Hashemi M, Eaton T, Sadeghpour A, Weis SA (2016) Nitrogen release dynamics and decomposition of buried and surface cover crop residues. Agron J 108:1735–1741

    Article  CAS  Google Scholar 

  • Jiao S, Xu Y, Zhang J, Lu Y (2019) Environmental filtering drives distinct continental atlases of soil archaea between dryland and wetland agricultural ecosystems. Microbiome 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Kielland K, Sinclair FL, Dahlgren RA, Newsham KK, Farrar JF, Murphy DV (2009) Soil organic nitrogen mineralization across a global latitudinal gradient. Glob Biogeochem Cy 23:1016

    Article  Google Scholar 

  • Jones DL, Willett VB (2006) Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem 38:991–999

    Article  CAS  Google Scholar 

  • Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, Bushman FD, Knight R, Kelley ST (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köster J, Rahmann S (2012) Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28:2520–2522

    Article  PubMed  Google Scholar 

  • Ladoni M, Basir A, Robertson PG, Kravchenko AN (2016) Scaling-up: cover crops differentially influence soil carbon in agricultural fields with diverse topography. Agric Ecosyst Environ 225:93–103

    Article  Google Scholar 

  • Liu C, Cui Y, Li X, Yao M (2021a) Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:255

    Article  Google Scholar 

  • Liu C, Xia R, Tang M, Chen X, Zhong B, Liu X, Bian R, Yang L, Zheng J, Cheng K, Zhang X, Drosos M, Li L, Shan S, Joseph S, Pan G (2022) Improved ginseng production under continuous cropping through soil health reinforcement and rhizosphere microbial manipulation with biochar: a field study of Panax ginseng from Northeast China. Hortic Res 9:108

    Article  Google Scholar 

  • Liu X, Hannula SE, Li X, Hundscheid MPJ, Klein Gunnewiek PJA, Clocchiatti A, Ding W, de Boer W (2021b) Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biol Biochem 160:108343

    Article  CAS  Google Scholar 

  • Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277

    Article  CAS  PubMed  Google Scholar 

  • Momesso L, Crusciol CAC, Cantarella H, Tanaka KS, Kowalchuk GA, Kuramae EE (2022) Optimizing cover crop and fertilizer timing for high maize yield and nitrogen cycle control. Geoderma 405:115423

    Article  CAS  Google Scholar 

  • Morgan Ernest SK, Brown JH (2001) Homeostasis and compensation: the role of species and resources in ecosystem stability. Ecology 82:2118–2132

    Article  Google Scholar 

  • Mori T, Aoyagi R, Kitayama K, Mo J (2021) Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition? Soil Biol Biochem 160:108363

    Article  CAS  Google Scholar 

  • Morlon H (2014) Phylogenetic approaches for studying diversification. Ecol Lett 17:508–525

    Article  PubMed  Google Scholar 

  • Muhammad I, Wang J, Sainju UM, Zhang S, Zhao F, Khan A (2021) Cover cropping enhances soil microbial biomass and affects microbial community structure: a meta-analysis. Geoderma 381:114696

    Article  CAS  Google Scholar 

  • Murphy DV, Stockdale EA, Poulton PR, Willison TW, Goulding KWT (2007) Seasonal dynamics of carbon and nitrogen pools and fluxes under continuous arable and ley-arable rotations in a temperate environment. Eur J Soil Sci 58:1410–1424

    Article  CAS  Google Scholar 

  • Murungu FS, Chiduza C, Muchaonyerwa P, Mnkeni PNS (2011) Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. Nutr Cycl Agroecosyst 89:115–123

    Article  CAS  Google Scholar 

  • Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Nevins CJ, Nakatsu C, Armstrong S (2018) Characterization of microbial community response to cover crop residue decomposition. Soil Biol Biochem 127:39–49

    Article  CAS  Google Scholar 

  • Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouri A, Lukas S, Singh S, Singh S, Machado S (2022) When do cover crops reduce nitrate leaching? A global meta-analysis. Glob Chang Biol 28:4736–4749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Maintainer HW (2019) Vegan: community ecology package. R Package Version 2:5–4

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’hara B, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2009) Vegan: community ecology package. R Package Version 1:15–11

    Google Scholar 

  • Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Smyth GK, Chen Y, Pal B, Visvader JE (2017) Differential methylation analysis of reduced representation bisulfite sequencing experiments using edgeR. F1000Res 6:2055

    Article  PubMed  Google Scholar 

  • Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv Agron 79:227–302

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, Macdonald AAM, Maclean JE, Myers-Smith IH, Norris AR, Xue X (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123:1420–1430

    Article  Google Scholar 

  • Wei Y, Xiong X, Ryo M, Badgery WB, Bi Y, Yang G, Zhang Y, Liu N (2022) Repeated litter inputs promoted stable soil organic carbon formation by increasing fungal dominance and carbon use efficiency. Biol Fertil Soils 58:619–631

    Article  CAS  Google Scholar 

  • Xiang X, Adams JM, Qiu C, Qin W, Chen J, Jin L, Xu C, Liu J (2021) Nutrient improvement and soil acidification inducing contrary effects on bacterial community structure following application of hairy vetch (Vicia villosa Roth L.) in Ultisol. Agric Ecosyst Environ 312:107348

    Article  CAS  Google Scholar 

  • Yang YQ, Deng SF, Yang YQ, Ying ZY (2022) Comparative analysis of the endophytic bacteria inhabiting the phyllosphere of aquatic fern Azolla species by high-throughput sequencing. BMC Microbiol 22:246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Xu Q, Chen Y, Liu N, Li Y, Zhang S, Cao W, Zhai B, Wang Z, Zhang D, Adl S, Gao Y (2021) Leguminous green manure enhances the soil organic nitrogen pool of cropland via disproportionate increase of nitrogen in particulate organic matter fractions. Catena 207:105574

    Article  CAS  Google Scholar 

  • Zhou G, Gao S, Chang D, Rees RM, Cao W (2021) Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresour Technol 319:124215

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Gao S, Lu Y, Liao Y, Nie J, Cao W (2020) Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil Till Res 197:104499

    Article  Google Scholar 

  • Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81:e00002–e00017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported financially by National Key Research and Development Program of China (2021YFD1700200) and the earmarked fund for CARS-Green Manure (CARS-22).

Author information

Authors and Affiliations

Authors

Contributions

HL: methodology, data curation, formal analysis, writing—reviewing and editing. SL: data curation, writing—reviewing and editing. GZ: data curation, writing—reviewing and editing. LF: methodology, data curation, writing—reviewing and editing. FH: data curation, writing—reviewing and editing. SG: data curation, writing—reviewing and editing. WC: conceptualization, supervision, data curation, writing—reviewing and editing.

Corresponding authors

Correspondence to Songjuan Gao or Weidong Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2470 kb)

ESM 2

(XLSX 65 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Li, S., Zhou, G. et al. Targeted regulation of the microbiome by green manuring to promote tobacco growth. Biol Fertil Soils 60, 69–85 (2024). https://doi.org/10.1007/s00374-023-01774-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01774-w

Keywords

Navigation