Skip to main content

Advertisement

Log in

Afterlife effect of cover crops on soil nematode food web: Implications from the plant ecological strategy

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

A trait-based approach is adopted to understand the responses of the soil nematode food web following cover crops incorporated into the soil, i.e., afterlife effect of plant. We conducted an in situ microcosm experiment with two cover crops including leguminous Astragalus sinicus L. (A. sinicus), characterized by high nutrient content, and gramineous Lolium multiflorum Lam (L. multiflorum), characterized by high C and lignin content, representing the acquisitive and conservative side of the economic spectrum, respectively. Furthermore, two incorporation rates were set to represent low and high biomass production of cover crops that could be incorporated into the soil. Soil main microbial groups, nematode food web, and physicochemical properties were analyzed at weeks 4 and 18 after cover crops incorporated into the soil. Results showed that, regardless of time, cover crops affected the abundance and composition of the soil nematode food web. L. multiflorum supported higher nematode abundance and more complex nematode food web than A. sinicus, charactering with higher fungivore/bacterivore, predator/prey, maturity index, and structure index, particularly under the high incorporation rates. In addition, A. sinicus improved much more resource availability (mineral N and dissolved organic C) than L. multiflorum. Together, the quantity and quality of plant residues jointly drive soil food web structure, and a trait-based framework facilitates the mechanical understanding of afterlife effect of plant on soil ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison SD (2012) A trait-based approach for modelling microbial litter decomposition. Ecol Lett 15:1058–1070

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. Oxford University Press, Oxford

    Google Scholar 

  • Barel JM, Kuyper TW, de Boer W, Douma JC, De Deyn GB (2018) Legacy effects of diversity in space and time driven by winter cover crop biomass and nitrogen concentration. J Appl Ecol 55:299–310

    Article  CAS  Google Scholar 

  • Bates D, Sarkar D, Bates MD, Matrix L (2007) The lme4 package. R Package Version 2:74

    Google Scholar 

  • Beltrán M, Galantini JA, Salvagiotti F, Tognetti P, Bacigaluppo S, Sainz Rozas HR, Barraco M, Barbieri PA (2021) Do soil carbon sequestration and soil fertility increase by including a gramineous cover crop in continuous soybean? Soil Sci Soc Am J 85:1380–1394

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Physiol Pharm 37:911–917

    CAS  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  PubMed  Google Scholar 

  • Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, Moora M, Munson AD, Pärtel M, Zobel M, Tamme R (2021) Fine-root traits in the global spectrum of plant form and function. Nature 597:683–687

    Article  CAS  PubMed  Google Scholar 

  • Chauvin C, Dorel M, Villenave C, Roger-Estrade J, Thuries L, Risède J-M (2015) Biochemical characteristics of cover crop litter affect the soil food web, organic matter decomposition, and regulation of plant-parasitic nematodes in a banana field soil. Appl Soil Ecol 96:131–140

    Article  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Coleman DC, Wall DH (2015) Soil fauna: occurrence, biodiversity, and roles in ecosystem function. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, Boston, pp 111–149

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Dias ATC, Cornelissen JHC, Berg MP (2017) Litter for life: assessing the multifunctional legacy of plant traits. J Ecol 105:1163–1168

    Article  Google Scholar 

  • Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I (2016) The global spectrum of plant form and function. Nature 529:167–171

    Article  PubMed  Google Scholar 

  • Djigal D, Chabrier C, Duyck P-F, Achard R, Quénéhervé P, Tixier P (2012) Cover crops alter the soil nematode food web in banana agroecosystems. Soil Biol Biochem 48:142–150

    Article  CAS  Google Scholar 

  • Dornbush ME, Isenhart TM, Raich JW (2002) Quantifying fine-root decomposition: An alternative to buried litterbags. Ecology 83:2985–2990

    Article  Google Scholar 

  • DuPont ST, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167

    Article  Google Scholar 

  • Du Preez G, Daneel M, De Goede R, Du Toit MJ, Ferris H, Fourie H, Geisen S, Kakouli-Duarte T, Korthals G, Sánchez-Moreno S, Schmidt JH (2022) Nematode-based indices in soil ecology: application, utility, and future directions. Soil Biol Biochem 169:108640

    Article  Google Scholar 

  • Ettema CH, Bongers T (1993) Characterization of nematode colonization and succession in disturbed soil using the Maturity Index. Biol Fertil Soils 16:79–85

    Article  Google Scholar 

  • Ferris H, Bongers T, de Goede RG (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29

    Article  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JH (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Freschet GT, Cornelissen JH, Van Logtestijn RS, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373

    Article  Google Scholar 

  • Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J (2021) Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol 232:1123–1158

    Article  PubMed  Google Scholar 

  • Fujii S, Berg MP, Cornelissen JH (2020) Living litter: dynamic trait spectra predict fauna composition. Trends Ecol Evol 35:886–896

    Article  PubMed  Google Scholar 

  • Franco ALC, Gherardi LA, de Tomasel CM, Andriuzzi WS, Ankrom KE, Shaw EA, Bach EM, Sala OE, Wall DH (2019) Drought suppresses soil predators and promotes root herbivores in mesic, but not in xeric grasslands. Proc Natl Acad Sci USA 116:12883–12888

    Article  PubMed  PubMed Central  Google Scholar 

  • Garland G, Edlinger A, Banerjee S, Degrune F, García-Palacios P, Pescador DS, Herzog C, Romdhane S, Saghai A, Spor A (2021) Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat Food 2:28–37

    Article  Google Scholar 

  • Garnier E, Navas M-L (2012) A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A Review Agron Sustain Dev 32:365–399

    Article  Google Scholar 

  • Gravel D, Albouy C, Thuiller W (2016) The meaning of functional trait composition of food webs for ecosystem functioning. Philos T R Soc B 371:20150268

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Hansen TH, Laursen KH, Persson DP, Pedas P, Husted S, Schjoerring JK (2009) Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis. Plant Methods 5:1–11

    Article  Google Scholar 

  • Hobbie SE (2015) Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol 30:357–363

    Article  PubMed  Google Scholar 

  • Joergensen RG (2022) Phospholipid fatty acids in soil-drawbacks and future prospects. Biol Fertil Soils 58:1–6

    Article  CAS  Google Scholar 

  • Kuo S, Jellum E (2000) Long-term winter cover cropping effects on corn (Zea mays L.) production and soil nitrogen availability. Biol Fertil Soils 31:470–477

    Article  Google Scholar 

  • Kurze S, Engelbrecht BM, Bilton MC, Tielbörger K, Álvarez-Cansino L (2021) Rethinking the plant economics spectrum for annuals: a multi-species study. Front Plant Sci 12:640862

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamichhane JR, Alletto L (2022) Ecosystem services of cover crops: a research roadmap. Trends Plant Sci 27:758–768

    Article  CAS  PubMed  Google Scholar 

  • Lavorel S, Storkey J, Bardgett RD, De Bello F, Berg MP, Le Roux X, Moretti M, Mulder C, Pakeman RJ, Díaz S (2013) A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J Veg Sci 24:942–948

    Article  Google Scholar 

  • Leslie AW, Wang K-H, Meyer SLF, Marahatta S, Hooks CRR (2017) Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop. Appl Soil Ecol 117–118:21–31

    Article  Google Scholar 

  • Li Z, Wang F, Su F, Wang P, Li S, Bai T, Wei Y, Liu M, Chen D, Zhu W (2021) Climate change drivers alter root controls over litter decomposition in a semi-arid grassland. Soil Biol Biochem 158:108278

    Article  CAS  Google Scholar 

  • Liu M, Chen X, Qin J, Wang D, Griffiths B, Hu F (2008) A sequential extraction procedure reveals that water management affects soil nematode communities in paddy fields. Appl Soil Ecol 40:250–259

    Article  Google Scholar 

  • Lu R (2000) Analysis methods of soil agricultural chemistry. China Agricultural Science and Technology Press, Beijing 107:147–150

    Google Scholar 

  • Mariotte P, Mehrabi Z, Bezemer TM, De Deyn GB, Kulmatiski A, Drigo B, Veen GC, Van der Heijden MG, Kardol P (2018) Plant-soil feedback: bridging natural and agricultural sciences. Trends Ecol Evol 33:129–142

    Article  PubMed  Google Scholar 

  • Martin AR, Isaac ME (2018) Functional traits in agroecology: advancing description and prediction in agroecosystems. J Appl Ecol 55:5–11

    Article  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Phytopathol 48:371–394

    Article  CAS  PubMed  Google Scholar 

  • Neutel A-M, Heesterbeek JA, Van de Koppel J, Hoenderboom G, Vos A, Kaldeway C, Berendse F, De Ruiter PC (2007) Reconciling complexity with stability in naturally assembling food webs. Nature 449:599–602

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szöcs E, Wagner H (2020) Vegan: community ecology package. Version 2.5–7. https:// CRAN.R- proje ct. org/ packa ge= vegan

  • Otfinowski R, Coffey V (2020) Can root traits predict communities of soil nematodes in restored northern prairies? Plant Soil 453:459–471

    Article  CAS  Google Scholar 

  • Prieto I, Roumet C, Cardinael R, Dupraz C, Jourdan C, Kim JH, Maeght JL, Mao Z, Pierret A, Portillo N (2015) Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum. J Ecol 103:361–373

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301

    Article  Google Scholar 

  • Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Kf C, Stokes A (2016) Root structure–function relationships in 74 species: evidence of a root economics spectrum related to carbon economy. New Phytol 210:815–826

    Article  PubMed  Google Scholar 

  • Rousk J, Frey SD (2015) Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients. Ecol Monogr 85:457–472

    Article  Google Scholar 

  • Sharma P, Singh A, Kahlon CS, Brar AS, Grover KK, Dia M, Steiner RL (2018) The role of cover crops towards sustainable soil health and agriculture—a review paper. Am J Plant Sci 9:1935–1951

    Article  CAS  Google Scholar 

  • Sikora RA, Coyne D, Hallmann J, Timper P (2018) Reflections and challenges: nematology in subtropical and tropical agriculture. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 1–19

    Chapter  Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook, Washington

  • Thakur MP, Reich PB, Fisichelli NA, Stefanski A, Cesarz S, Dobies T, Rich RL, Hobbie SE, Eisenhauer N (2014) Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia 175:713–723

    Article  PubMed  Google Scholar 

  • Thapa R, Tully KL, Cabrera ML, Dann C, Schomberg HH, Timlin D, Reberg-Horton C, Gaskin J, Davis BW, Mirsky SB (2021) Effects of moisture and temperature on C and N mineralization from surface-applied cover crop residues. Biol Fertil Soils 57:485–498

    Article  CAS  Google Scholar 

  • Tiemann L, Grandy A, Atkinson E, Marin-Spiotta E, McDaniel M (2015) Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol Lett 18:761–771

    Article  CAS  PubMed  Google Scholar 

  • van den Hoogen J, Geisen S, Routh D et al (2019) Soil nematode abundance and functional group composition at a global scale. Nature 572:194–191

    Article  PubMed  Google Scholar 

  • Van Der Krift TA, Berendse F (2001) The effect of plant species on soil nitrogen mineralization. J Ecol 89:555–561

    Article  Google Scholar 

  • Van Soest PJ, Wine R (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc off Anal Chem 50:50–55

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, Van Der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci U S A 111:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilschut RA, Geisen S (2021) Nematodes as drivers of plant performance in natural systems. Trends Plant Sci 26:237–247

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Xiong D, Wei C, Wubs ERJ, Veen GF, Liang W, Wang X, Li Q, Putten WH, Han X, Ordonez A (2019) Nonlinear responses of soil nematode community composition to increasing aridity. Glob Ecol Biogeogr 29:117–126

    Article  Google Scholar 

  • Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva S (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37:199–210

    Article  Google Scholar 

  • Zhang C, Wang J, Ren Z, Hu Z, Tian S, Fan W, Chen X, Griffiths BS, Hu F, Liu M (2020) Root traits mediate functional guilds of soil nematodes in an ex-arable field. Soil Biol Biochem 151:108038

    Article  CAS  Google Scholar 

  • Zhang C, Xue W, Xue J, Zhang J, Qiu L, Chen X, Hu F, Kardol P, Liu M (2022a) Leveraging functional traits of cover crops to coordinate crop productivity and soil health. J Appl Ecol 59:2627–2641

  • Zhang J, Hu Z, Zhang C, Tao Y, Chen X, Griffiths BS, Liu M (2022b) Roots with larger specific root length and C: N ratio sustain more complex rhizosphere nematode community. Plant Soil 477:693–706

  • Zheng W, Zhao Z, Gong Q, Zhai B, Li Z (2018) Effects of cover crop in an apple orchard on microbial community composition, networks, and potential genes involved with degradation of crop residues in soil. Biol Fertil Soils 54:743–759

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Misses Songjuan Gao, Jingxuan Chen, and Ting Liu who offered valuable help in the maintenance of field experiment and manuscript preparation.

Funding

This work was supported by the National Key R&D program (2021YFD1700202) and National Foundation of Sciences in China (42077047, 41877056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manqiang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xue, J., Li, N. et al. Afterlife effect of cover crops on soil nematode food web: Implications from the plant ecological strategy. Biol Fertil Soils 58, 937–947 (2022). https://doi.org/10.1007/s00374-022-01676-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-022-01676-3

Keywords

Navigation